Вращающее магнитное поле скорость магнитного поля. Что такое синхронное вращение




Важным преимуществом трехфазного тока является возможность получения вращающегося магнитного поля, лежащего в основе принципа действия электрических машин – асинхронных и синхронных двигателей трехфазного тока.

Рис. 7.2. Схема расположения катушек при получении вращающегося магнитного поля (а) и волновая диаграмма трехфазной симметричной системы токов, текущих по катушкам (б)

Вращающееся магнитное поле получают, пропуская трехфазную систему токов (рис. 7.2,б) по трем одинаковым катушкам А, В, С (рис. 7.2,а), оси которых расположены под углом 120° относительно друг друга.

На рисунке 7.2,а показаны положительные направления токов в катушках и направления индукций магнитных полей В А , В В , В С , создаваемых каждой из катушек в отдельности.

На рисунке 7.3 показаны действительные направления токов для моментов времени
и направления индукцииВ рез результирующего магнитного поля, создаваемого тремя катушками.

Анализ рисунка 7.3 позволяет сделать выводы:

а) индукция В рез результирующего магнитного поля с течением времени меняет свое направление (вращается);

б) частота вращения магнитного поля такая же, как и частота изменения тока. Так, при f = 50 Гц вращающееся магнитное поле совершает пять- десять оборотов в секунду или три тысячи оборотов в минуту.

Значение индукции результирующего В рез = 1,5B m магнитного поля постоянно,

где B m – амплитуда индукции одной катушки.

в различные моменты времени

7.3 Асинхронные машины

7.3.1 Принцип действия асинхронного двигателя (АД) . Поместим между неподвижными катушками (рис.7.4) в области вращающегося магнитного поля укрепленный на оси подвижный металлический цилиндр – ротор.

Пусть магнитное поле вращается «по часовой стрелке», тогда цилиндр относительно вращающегося магнитного поля вращается в обратном направлении.

Учитывая это, по правилу правой руки найдем направление наведенных в цилиндре токов.

На рисунке 7.4 направления наведенных токов (вдоль образующих цилиндра) показаны крестиками («от нас») и точками («к нам»).

Применяя правило левой руки (рис. 7.1,б), получаем, что взаимодействие наведенных токов с магнитным полем порождает силы F , приводящие во вращательное движение ротор в том же направлении, в каком вращается магнитное поле.

Частота вращения ротора
меньше частоты вращения магнитного поля , т.к. при одинаковых угловых скоростях относительная скорость ротора и вращающегося магнитного поля была бы равна нулю и в роторе не было бы наведенных ЭДС и токов. Следовательно, не было бы сил F , создающих вращающий момент. Рассмотренное простейшее устройство поясняет принцип действия асинхронных двигателей. Слово «асинхронный» (греч.) означает неодновременный. Этим словом подчеркивается различие в частотах вращающегося магнитного поля и ротора – подвижной части двигателя.

Рис. 7.4. К принципу действия асинхронного двигателя

Вращающееся магнитное поле, создаваемое тремя катушками, имеет два полюса и называется двухполюсным вращающимся магнитным полем (одна фаза полюсов).

За один период синусоидального тока двухполюсное магнитное поле делает один оборот. Следовательно, при стандартной частоте f 1 = 50 Гц это поле делает три тысячи оборотов в минуту. Скорость вращения ротора немногим меньше этой синхронной скорости.

В тех случаях, когда требуется асинхронный двигатель с меньшей скоростью, применяется многополюсная обмотка статора, состоящая из шести, девяти и т.д. катушек. Соответственно вращающееся магнитное поле будет иметь две, три и т.д. пары полюсов.

В общем случае, если поле имеет р пар полюсов, то его скорость вращения будет

.

7.3.2 Устройство асинхронного двигателя . Магнитная система (магнитопровод) асинхронного двигателя состоит из двух частей: наружной неподвижной, имеющей форму полого цилиндра (рис. 8.5), и внутренней – вращающегося цилиндра.

Обе части асинхронного двигателя собираются из листов электротехнической стали толщиной 0,5 мм. Эти листы для уменьшения потерь на вихревые токи изолированы друг от друга слоем лака.

Неподвижная часть машины называется статором, а вращающаяся – ротором (от латинского stare – стоять и rotate вращаться).

Рис. 7.5. Схема устройства асинхронного двигателя: поперечный разрез (а);

обмотка ротора(б): 1 – статор; 2 – ротор; 3 – вал; 4 – витки обмотки статора;

5 – витки обмотки ротора

В пазах с внутренней стороны статора уложена трехфазная обмотка, токи которой возбуждают вращающееся магнитное поле машины. В пазах ротора размещена вторая обмотка, токи в которой индуктируются вращающимся магнитным полем.

Магнитопровод статора заключен в массивный корпус, являющийся внешней частью машины, а магнитопровод ротора укреплен на валу.

Роторы асинхронных двигателей изготавливаются двух видов: короткозамкнутые и с контактными кольцами. Первые из них проще по устройству и чаще применяются.

Обмотка короткозамкнутого ротора представляет собой цилиндрическую клетку («беличье колесо») из медных шин или алюминиевых стержней, замкнутых накоротко на торцах двумя кольцами (рис.7.5,б). Стержни этой обмотки вставляются без изоляции в пазы магнитопровода.

Применяется также способ заливки пазов магнитопровода ротора расплавленным алюминием с одновременной отливкой и замыкающих колец.

7.3.3 Характеристики асинхронного двигателя . Скорость вращения вращающегося магнитного поля определяется либо угловой частотой , n , либо числом оборотов п в минуту. Эти две величины связаны формулой

. (7.3)

Характерной величиной является относительная скорость вращающегося магнитного поля, называемая скольжением S :

или

где
– угловая частота ротора, рад/с;

– число оборотов в минуту, об/мин.

Чем ближе скорость ротора к скорости вращающегося магнитного поля , тем меньше ЭДС, индуктируемые полем в роторе, а следовательно, и токи в роторе.

Убывание токов уменьшает вращающий момент, воздействующий на ротор, поэтому ротор двигателя должен вращаться медленнее вращающегося магнитного поля – асинхронно.

Можно показать, что вращающий момент АД определяется следующим выражением:

, (7.4)

где , , x 1 , – параметры электрической схемы замещения, которые приводятся в справочниках по АД;

–действующее фазное напряжение на обмотке статора.

У современных асинхронных двигателей скольжение даже при полной нагрузке невелико – около 0,04 (четыре процента) у малых и около 0,015.. .0,02 (полтора – два процента) у крупных двигателей.

Характерная кривая зависимости М от скольжения S показана на рисунке 7.6,а.

Максимум вращающегося момента разделяет кривую
на устойчивую часть от S = 0 до и неустойчивую часть от до S = 1, в пределах которой вращающий момент уменьшается с ростом скольжения.

На участке от S = 0 до при уменьшении тормозящего момента
на валу асинхронного двигателя увеличивается скорость вращения, скольжение уменьшается, так что на этом участке работа асинхронного двигателя устойчива.

На участке от до S = 1 с уменьшением
скорость вращенияувеличивается, скольжение уменьшается и вращающий момент увеличивается, что приводит к еще большему возрастанию скорости вращения, так что работа двигателя неустойчива.

Таким образом, пока тормозящий момент
, динамическоеравновесие моментов автоматически восстанавливается. Когда же
, при дальнейшем увеличении нагрузки возрастание скольжения приводит к уменьшению вращающегося моментаМ и двигатель останавливается вследствие преобладания тормозящего момента над вращающим.

Значение М к можно рассчитать по формуле

.

Для практики большое значение имеет зависимость скорости двигателя от нагрузки на валу
. Эта зависимость носит название механической характеристики (рис. 7.6,б).

Как показывает кривая рисунка 7.6,б, скорость асинхронного двигателя лишь незначительно снижается при увеличении вращающего момента в пределах от нуля до максимального значения
.Пусковой момент соответствующий S = 1, можно получить из (7.4), принимая S = 1. Обычно пусковой момент М пуск = (0,81,2)М ном, М ном – номинальный момент. Такую зависимость называют жесткой .

Рис. 7.6. Зависимость вращающего момента на валу асинхронного двигателя

от скольжения (а); механическая характеристика (б)

Асинхронные двигатели получили широкое распространение благодаря следующим достоинствам: простоте устройства; высокой надежности в эксплуатации; низкой стоимости.

С помощью асинхронных двигателей приводятся в движение подъемные краны, лебедки, лифты, эскалаторы, насосы, вентиляторы и другие механизмы.

Асинхронные двигатели имеют следующие недостатки:


    регулирование скорости вращения ротора затруднено.

Известно, что скорость магнитного поля определяется и частотой переменного тока. В частности, если трехфазную обмотку двигателя разместить в шести пазах на внутренней поверхности статора, то за половину периода переменного тока вектор магнитной индукции сделает пол-оборота, а за полный период - один оборот. В этом случае обмотка статора создает магнитное поле с одной парой полюсов и называется двухполюсной.

Если обмотка статора состоит из шести катушек (по две последовательно соединенные катушки на каждую фазу), размещенных в двенадцати пазах, то за половину периода переменного тока вектор магнитной индукции повернется на четверть оборота, а за полный период - на пол-оборота. Вместо двух полюсов на трех обмотках теперь магнитное поле статора имеет четыре полюса (две пары полюсов).

Скорость вращения магнитного поля обратно пропорциональна числу пар полюсов.

где ѓ -- частота переменного тока в Гц, а коэффициент 60 появился из-за того, что n1 принято измерять в оборотах в минуту.

Поскольку число пар полюсов может быть только целым, то скорость вращения магнитного поля может принимать не произвольные, а только определенные значения:

Ротор асинхронного двигателя вращается в ту же сторону, что n магнитное поле, со скоростью, несколько меньшей скорости вращения магнитного поля, так как только в этом случае в обмотке ротора будут индуцироваться ЭДС и токи, и на ротор будет действовать вращающий момент. Обозначим скорость вращения ротора n2. Тогда величина n1 - n2 , которая называется скоростью скольжения, представляет собой относительную скорость магнитного поля и ротора, а степень отставания ротора от магнитного поля, выраженная в процентах, называется скольжением s:

Скольжение асинхронного двигателя при номинальной нагрузке обычно составляет 3-7 %. При увеличении нагрузки скольжение увеличивается, и двигатель может остановиться.

Вращающий момент М асинхронного двигателя создается благодаря взаимодействию магнитного потока поля статора Ф с индуцированным в обмотке ротора током I2, поэтому величина его пропорциональна произведению I2Ф.Двигатель будет работать устойчиво с постоянной скоростью ротора при равновесии моментов, т.е. тогда, когда вращающий момент Мер равен тормозному моменту на валу двигателя M mop:

Любой нагрузке машины соответствует определенное число оборотов ротора n2 и определенное скольжение S.

Обратите внимание, что частота вращения магнитного поля не зависит от режима работы асинхронной машины и ее нагрузки.

При анализе работы асинхронной машины часто используют понятие о скорости вращения магнитного поля щ0, которая определяется соотношением:

щ0 = (2 р f) / p = р n0 / 30 [рад/с] 2. 4

В предыдущем параграфе было показано, что скорость вращения магнитного поля постоянна и определяется частотой тока. В частности, если трехфазную обмотку двигателя разместить в шести пазах на внутренней поверхности статора (рис. 5-7), то, как было показано (см. рис. 5-4), ось магнитного потока повернется

за половину периода переменного тока на полоборота, а за полный период - на один оборот. Скорость вращения магнитного потока их можно представить так:

В этом случае обмотка статора создает магнитное поле с одной парой полюсов. Такая обмотка получила название двухполюсной.

Если обмотка статора состоит из шести катушек (по две последовательно соединенные катушки на фазу), уложенные в двенадцати пазах (рис. 5-8), то в результате построений, аналогичных для двухполюсной обмотки, можно получить, что ось магнитного потока за полпериода повернется на четверть оборота, а за полный период - на полоборота (рис. 5-9). Вместо двух полюсов при трех

обмотках поле статора теперь имеет четыре полюса (две пары полюсов). Скорость вращения магнитного поля статора в этом случае равна

Увеличивая число пазов и обмоток и производя аналогичные рассуждения, можно сделать вывод, что скорость вращения магнитного поля в общем случае при парах полюсов равна

Так как число пар полюсов может быть только целым (число катушек в обмотке статора всегда кратно трем), то скорость вращения магнитного поля может иметь не произвольные, а вполне определенные значения (см. табл. 5.1).

Таблица 5.1

На практике для получения постоянного значения вращающего момента, действующего на ротор в течение одного оборота, число пазов в статоре значительно увеличивают (рис. 5-10) и каждую сторону катушки размещают в нескольких пазах, при этом каждая обмотка состоит из нескольких секций, соединенных между собой последовательно. Обмотки, как правило, делают двухслойными. В каждом пазу укладывают одну над другой две стороны секций двух разных катушек, причем, если одна активная сторона лежит на дне одного паза, то другая активная сторона этой секции лежит наверху другого паза, секции и катушки соединяют между собой так, чтобы в большей части проводников каждого паза направление токов было одинаковым.

Одним из самых распространённых электродвигателей, который используется в большинстве устройств электропривода, является асинхронный двигатель. Этот двигатель называют асинхронным (не-синхронный) по той причине, что его ротор вращается с меньшей скоростью, чем у синхронного двигателя, относительно скорости вращения вектора магнитного поля.

Необходимо объяснить, что такое синхронная скорость.

Синхронная скорость – это такая скорость, с которой вращается магнитное поле в роторной машине, если быть точным, то это угловая скорость вращения вектора магнитного поля. Скорость вращения поля зависит от частоты протекающего тока и количества полюсов машины.

Асинхронный двигатель всегда работает на скорости меньшей, чем скорость синхронного вращения, потому как магнитное поле, которое образовано обмотками статора, будет генерировать встречный магнитный поток в роторе. Взаимодействие этого сгенерированного встречного магнитного потока с магнитным потоком статора сделает так, что ротор начнёт вращаться. Так как магнитный поток в роторе будет отставать, то ротор никогда не сможет самостоятельно достигнуть синхронной скорости, то есть такой же с какой вращается вектор магнитного поля статора.

Существует два основных типа асинхронного двигателя, которые определяются по типу подводимого питания. Это:

  • однофазный асинхронный двигатель;
  • трёхфазный асинхронный двигатель.

Следует заметить, что однофазный асинхронный двигатель не способен самостоятельно начинать движение (вращение). Для того, чтобы он начал вращаться, необходимо создать некоторое смещение из положения равновесия. Это достигается различными способами, с помощью дополнительных обмоток, конденсаторов, переключений в момент пуска. В отличие от однофазного асинхронного двигателя, трёхфазный двигатель способен начинать самостоятельное движение (вращение) без внесения каких-либо изменений в конструкцию или условия пуска.

От двигателей постоянного тока (DC) асинхронные двигатели переменного тока (AC) конструктивно отличаются тем, что питание подаётся на статор, в отличие от двигателя постоянного тока, в котором через щёточный механизм подаётся питание на якорь (ротор).

Принцип работы асинхронного двигателя

Подавая напряжение только на обмотку статора, асинхронный двигатель начинает работать. Интересно знать, как это работает, почему так происходит? Это очень просто, если понять, как происходит процесс индукции, когда в роторе индуцируется магнитное поле. Например, в машинах постоянного тока, приходится отдельно создавать магнитное поле в якоре (роторе) не через индукцию, а посредством щёток.

Когда мы подаём напряжение на обмотки статора, в них начинает протекать электрический ток, который создаёт магнитное поле вокруг обмоток. Далее, от многих обмоток, которые расположены на магнитопроводе статора формируется общее магнитное поле статора. Это магнитное поле характеризуется магнитным потоком, величина которого изменяется во времени, кроме этого направление магнитного потока меняется в пространстве, а точнее оно вращается. В итоге получается, что вектор магнитного потока статора вращается как раскрученная праща с камнем.

В полном соответствии с законом электромагнитной индукции Фарадея, в роторе, который имеет короткозамкнутую обмотку (короткозамкнутый ротор). В этой роторной обмотке будет протекать наведённый электрический ток, так как цепь замкнута, и она находится в режиме короткого замыкания. Этот ток точно также как и питающий ток в статоре будет создавать магнитное поле. Ротор двигателя становится магнитом внутри статора, который имеет магнитное вращающееся поле. Оба магнитных поля от статора и ротора начнут взаимодействовать, подчиняясь законам физики.

Так как статор неподвижен и его магнитное поле вращается в пространстве, а в роторе индуцируется ток, что фактически делает из него постоянный магнит, подвижный ротор начинает вращаться потому, как магнитное поле статора начинает его толкать, увлекая за собой. Ротор как бы сцепляется с магнитным полем статора. Можно сказать, что ротор стремится вращаться синхронно с магнитным полем статора, но для него это недостижимо, так как в момент синхронизации магнитные поля компенсируют друг друга, что приводит к асинхронной работе. Другими словами при работе асинхронного двигателя ротор скользит в магнитном поле статора.

Скольжение может быть как с запаздыванием, так и с опережением. Если происходит запаздывание, то имеем двигательный режим работы, когда электрическая энергия преобразуется в механическую энергию, если скольжение происходит с опережением ротора, то имеем генераторный режим работы, когда механическая энергия преобразуется в электрическую.

Создаваемый крутящий момент на роторе зависит от частоты переменного тока питания статора, а также от величины напряжения питания. Изменяя частоту тока и величину напряжения можно влиять на крутящий момент ротора и тем самым управлять работой асинхронного двигателя. Это справедливо как для однофазных, так и трёхфазных асинхронных двигателей.


Виды асинхронного двигателя

Однофазный асинхронный двигатель подразделяется на следующие виды:

  • С раздельными обмотками (Split-phase motor);
  • С пусковым конденсатором (Capacitor start motor);
  • С пусковым конденсатором и рабочим конденсатором (Capacitor start capacitor run induction motor);
  • Со смещённым полюсом (Shaded-pole motor).

Трёхфазный асинхронный двигатель делится на следующие виды:

  • С короткозамкнутым ротором в виде беличьей клетки (Squirrel cage induction motor);
  • С контактными кольцами, фазным ротором (Slip ring induction motor);

Как было упомянуто выше, однофазный асинхронный двигатель не может самостоятельно начинать движение (вращение). Что следует понимать под самостоятельностью? Это когда машина начинает работать автоматически без какого-либо влияния из внешней среды. Когда мы включаем бытовой электроприбор, например вентилятор, то он начинает работать сразу же, от нажатия клавиши. Необходимо отметить, что в быту используется однофазный асинхронный двигатель, например двигатель в вентиляторе. Как же происходит такой самостоятельный запуск, если выше сказано, что такой тип двигателей его не допускает? Для того, чтобы разобраться в этом вопросе надо изучить способы пуска однофазных моторов.

Почему трёхфазный асинхронный двигатель самозапускающийся?

В трёхфазной системе каждая фаза относительно двух других имеет угол равный 120 градусов. Все три фазы, таким образом, расположены равномерно по кругу, круг имеет 360 градусов, а это три раза по 120 градусов (120+120+120=360).


Если рассмотреть три фазы, А, B, C, то можно заметить, что лишь одна из них в начальный момент времени будет иметь максимальное значение моментального значения напряжения. Вторая фаза будет увеличивать значение своего напряжения вслед за первой, а третья фаза будет следовать за второй. Таким образом, мы имеем порядок чередования фаз A-B-C по мере нарастания их значения и возможен другой порядок в порядке убывания напряжения C-B-A. Даже если записать чередование иначе, например вместо A-B-C, написать B-C-A, то чередование останется прежним, так как цепочка чередования в любом порядке образует замкнутый круг.

Как же будет вращаться ротор асинхронного трёхфазного двигателя? Так как ротор увлекается магнитным полем статора и скользит в нем, то совершенно очевидно, что ротор будет двигаться в направлении вектора магнитного поля статора. В какую сторону будет вращаться магнитное поле статора? Так как обмотка статора трёхфазная и все три обмотки расположены равномерно на статоре, то образованное поле будет вращаться в направлении чередования фаз обмоток. Отсюда делаем вывод. Направление вращения ротора зависит от порядка чередования фаз обмоток статора. Изменив порядок чередования, фаз мы получим вращение двигателя в противоположную сторону. На практике, для изменения вращения двигателя достаточно поменять на местами две любые питающие фазы статора.

Почему однофазный асинхронный двигатель не начинает вращаться самостоятельно?

По той причине, что он питается от одной фазы. Магнитное поле однофазного двигателя является пульсирующим, а не вращающимся. Основная задача запуска заключается в создании из пульсирующего поля вращающегося. Эта проблема решается с помощью создания смещения фазы в другой обмотке статора с помощью конденсаторов, индуктивностей и пространственного расположения обмоток в конструкции двигателя.

Необходимо отметить, что однофазные асинхронные двигатели эффективны в использовании при наличии постоянной механической нагрузки. Если нагрузка меньше и двигатель работает, не достигая своей максимальной нагрузки, то его эффективность значительно снижается. Это является недостатком однофазного асинхронного двигателя и поэтому, в отличии от трёхфазных машин, их применяют там, где механическая нагрузка постоянна.

§ 65. ВРАЩАЮЩЕЕСЯ МАГНИТНОЕ ПОЛЕ

Действие многофазной машины переменного тока основано на использовании явления вращающегося магнитного поля.

Вращающееся магнитное поле создает любая многофазная систе­ма переменного тока, т. е. система с числом фаз две, три и т. д.

Выше было отмечено, что наибольшее распространение получил трехфазный переменный ток. Поэтому рассмотрим вращающееся магнитное поле трехфазной обмотки машины переменного тока (рис. 70).

На статоре расположены три ка­тушки, оси которых сдвинуты взаим­но на углы 120°. Каждая катушка для наглядности изображена состоя­щей из одного витка, находящегося в двух пазах (впадинах) статора. В действительности катушки имеют большое число витков. Буквами А, В, С обозначены начала катушек, X Y, Z - концы их. Катушки соедине­ны звездой, т. е. концы X, Y, Z соеди­няются между собой, образуя общую нейтраль, а начала А, В, С подклю­чаются к трехфазной сети перемен­ного тока. Катушки могут соединять­ся и треугольником.

По катушкам протекают синусоидальные токи с одинаковым амплитудами Im и частотой ω = 2πf, фазы которых смещены на 1/3 периода (рис. 71).

Токи, протекающие в катушках, возбуждают переменные магнитные поля, магнитные линии которых будут пронизывать катушки в направлении, перпендикулярном их плоскостям. Следовательно, средняя магнитная линия или ось магнитного поля, создаваемого катушкой А - X, будет направлена под углом 90° к плоскости этой катушки.

Направления магнитных полей всех трех катушек показаны на рис. 70 векторами В А, В В и В С, сдвинутыми один относительное другого также на 120°.

При этом в проводниках статора, подключенных к начальным точкам А, В, С, токи, принятые положительными, будут направлены на зрителя, а в проводниках, подключенных к конечными точкам X, Y и Z,- от зрителя (см. рис. 70).

Положительным направлениям токов будут соответствовать положительные направления магнитных полей, показанные на том же рисунке и определяемые по правилу буравчика.

На рис, 71 приведены кривые токов всех трех катушек, которые позволяют найти мгновенное значение тока каждой катушки для любого момента времени.

Не касаясь количественной стороны явления, определим сна­чала направления магнитного поля, созданного трехфазной обмот­кой для различных моментов времени.

В момент t= 0 ток в катушке А - X равен нулю, в катушке В - Y отрицателен, в катушке С -Z положителен. Следовательно, в этот момент тока в проводниках А и X нет, в проводниках С и Z он имеет положительное направление, а в проводниках B и Y – отрицательное направление (рис. 72, а ).

Таким образом, в выбранный нами момент t=0 в проводниках С и Y ток направлен на зрителя, а в проводниках В и Z - от зри­теля.

При таком направлении тока согласно правилу буравчика маг­нитные линии созданного магнитного поля направлены снизу вверх, х. е. в нижней части внутренней окружности статора находится северный полюс, а в верхней части - южный.

В момент t 1 в фазе А ток положителен, в фазах В и С - отри­цателен. Следовательно, в проводниках Y, А и Z ток направлен на зрителя, а в проводниках С, X и В - от зрителя (рис. 72, б), и маг­нитные линии магнитного поля повернуты на 90° по часовой стрел­ке относительно своего начального направления.

В момент t 2 ток в фазах А и В положителен, а в фазе С - отри­цателен. Следовательно, в проводниках А, Z и В ток направлен на зрителя, а в проводниках Y, С и X - от зрителя и магнитные линии магнитного поля повернуты еще на больший угол относительно своего начального направления (рис. 72, в).

Таким образом, во времени происходит непрерывное и равно­мерное изменение направлений магнитных линий магнитного поля, созданного трехфазной обмоткой, т. е. это магнитное поле вращает­ся с постоянной скоростью.

В нашем случае вращение магнитного поля происходит по часо­вой стрелке.

Если изменить чередование фаз трехфазной обмотки, т. е. изме­нить подключение к сети любых двух из трех катушек, то изменит­ся и направление вращения магнитного поля. На рис. 73 показана трехфазная обмотка, у которой изменено подключение катушек В и С к сети. Из направления магнитных линий магнитного поля для ранее выбранных моментов времени t=0, t 1 и t 2 видно, что вра­щение магнитного поля происходит теперь против часовой стрелки.

Магнитный поток, создаваемый трехфазной системой перемен­ного тока в симметричной системе катушек, является величиной постоянной и в любой момент времени равен полуторному значению максимального потока одной фазы .

Это можно доказать, определив результирующий магнитный поток Ф для любого момента времени.

Так, для момента t 1 , когда ωt 1 ==90°, токи в катушках принима­ют следующие значения:

Следовательно, магнитный поток Ф А катушки А в выбранный момент имеет наибольшее значение и направлен по оси этой катушки, т. е. положительно. Магнитные потоки катушки В и С вдвое меньше максимального и отрицательны (рис. 74).

Геометрическую сумму потоков Фа, Фв, Фс можно найти, построив их последовательно в принятом масштабе в виде отрезков. Соединив начало первого отрезка с концом последнего, получим отрезок результирующего магнитного потока Ф. Численно этот поток будет в полтора раза больше максимального потока одной фазы.

Например, для момента времени А (см. рис. 74) результирующий магнитный поток

так как в этот момент результирующий поток совпадает с потоком Фа и сдвинут относительно потоков Фв и Фс на 60°.

Имея в виду, что в момент t 1 магнитные потоки катушек прини­мают значения результирующий маг­нитный поток можно выразить так:

В момент t=0 результирующее магнитное поле было направле­но по вертикальной оси (см. рис. 72, а). За время, равное одному периоду изменения тока в катушках, магнитный поток повернется на один оборот в пространстве и будет вновь направлен по верти­кальной оси, так же как и в момент t=0.

Если частота тока f, т. е. ток претерпевает f периодов изменения в одну секунду, то магнитный поток трехфазной обмотки совершит f (оборотов в секунду или 60f оборотов в минуту, т, е,

n 1 - число оборотов вращающегося магнитного поля в минуту.

Мы рассмотрели простейший случай, когда обмотка имеет одну пару полюсов.

Если обмотку статора выполнить так, что провода каждой фа­зы будут разбиты на 2, 3, 4 и т. д. одинаковые группы, симметрично расположенные по окружности статора, то число пар полюсов будет соответственно равно 2, 3, 4 и т. д.

На рис. 75 показана обмотка одной фазы, состоящая из трех симметрично расположен­ных по окружности статора катушек и обра­зующая шесть полюсов или три пары полю­сов.

В многополюсных обмотках магнитное поле за один период изменения тока повора­чивается на угол, соответствующий расстоя­нию между двумя одноименными полюсами.

Таким образом, если обмотка имеет 2, 3, 4 и т. д. пары полюсов, то магнитное поле за время одного периода изменения тока поворачивается на и т. д. часть окружности статора. В общем случае, обозначив буквой р число пар полюсов, найдем путь, пройденный магнитным полем за один период изменения тока, равным одной р -той доли окружности статора. Следовательно, число оборотов в минуту магнитного поля обратно пропорционально числу пар полюсов, т. е.

Пример 1. Определить число оборотов магнитного поля машин с числом пар полюсов р =1, 2, 3 и 4, работающих от сети с частотой тока f=50 гц.

Решение. Число оборотов магнитного поля

Пример 2 . Магнитное поле машины, включенной в сеть с частотой тока 50 гц, делает 1500 об/мин. Определить число оборотов магнитного поля этой ма­шины, если она будет включена в сеть с частотой тока 60 гц.

Решение. Число пар полюсов машины

Число оборотов магнитного поля при новой частоте

Контрольные вопросы

  1. Объясните устройство и принцип работы трехфазного генератора.
  2. В каком случае не нужен нулевой провод при соединении обмотки генератора и приемников звездой?
  3. Каково соотношение между линейными и фазными значениями напряже­ний и токов при соединении источников и потребителей энергии звездой и треугольником?
  4. Какие достоинства имеет схема соединения приемников треугольником?
  5. Каким выражением определяется мощность трехфазного тока при симмет­ричной нагрузке?
  6. Каким образом можно изменить направление вращения магнитного поля симметричной трехфазной системы катушек?
  7. От чего зависит скорость вращения магнитного поля симметричной трехфазной системы?
Предыдущая |