Двоичный код. Виды и длина двоичного кода




Решил сделать такой ниструмент как преобразование текста в двоичный код и обратно, такие сервисы есть, но они как правило работают с латиницей, мой же транслятор работает с кодировкой unicode формата UTF-8 , который кодирует кириллические символы двумя байтами.На данный момент возможности транслятора ограничены двухбайтными кодировками т.е. китайские иероглифы транслировать не получиться, но я собираюсь исправить это досадное недоразумение.

Для преобразования текста в бинарное представление введите текст в левое окошко и нажмите TEXT->BIN в правом окошке появится его двоичное представление.

Для преобразования бинарного кода в текст введите кода в правое окошко и нажмите BIN->TEXT в левом окошке появится его символьное представление.

В случае, если перевод бинарного кода в текст или наоборот не получился - проверьте корректность ваших данных!

Обновление!

Теперь доступно обратное преобразование текста вида:

в нормальный вид. Для этого нужно поставить галочку: "Заменить 0 пробелами, а 1 заполнителем █". Затем вставьте текст в правое окошко: "Текст в бинарном представлении" и нажмите кнопку под ним "BIN->TEXT".

При копировании таких текстов нужно быть осторожным т.к. можно запросто потерять пробелы в начале или в конце. Например строка сверху имеет вид:

██ █ █ ███████ █ ██ ██ █ █ ███ ██ █ █ ██ █ ██ █ █ ██ █ ███ █ ██ █ █ ██ █ █ ███ ██ █ █ ███ ██ █ ██

а на красном фоне:

██ █ █ ███████ █ ██ ██ █ █ ███ ██ █ █ ██ █ ██ █ █ ██ █ ███ █ ██ █ █ ██ █ █ ███ ██ █ █ ███ ██ █ ██

видите сколько пробелов в конце можно потерять?

Термин «бинарный» по смыслу – состоящий из двух частей, компонентов. Таким образом бинарные коды это коды которые состоят только из двух символьных состояний например черный или белый, светлый или темный, проводник или изолятор. Бинарный код в цифровой технике это способ представления данных (чисел, слов и других) в виде комбинации двух знаков, которые можно обозначить как 0 и 1. Знаки или единицы БК называют битами. Одним из обоснований применения БК является простота и надежность накопления информации в каком-либо носителе в виде комбинации всего двух его физических состояний, например в виде изменения или постоянства светового потока при считывании с оптического кодового диска.
Существуют различные возможности кодирования информации.

Двоичный код

В цифровой технике способ представления данных (чисел, слов и других) в виде комбинации двух знаков, которые можно обозначить как 0 и 1. Знаки или единицы ДК называют битами.

Одним из обоснований применения ДК является простота и надежность накопления информации в каком-либо носителе в виде комбинации всего двух его физических состояний, например в виде изменения или постоянства магнитного потока в данной ячейке носителя магнитной записи.

Наибольшее число, которое может быть выражено двоичным кодом, зависит от количества используемых разрядов, т.е. от количества битов в комбинации, выражающей число. Например, для выражения числовых значений от 0 до 7 достаточно иметь 3-разрядный или 3-битовый код:

числовое значение двоичный код
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Отсюда видно, что для числа больше 7 при 3-разрядном коде уже нет кодовых комбинаций из 0 и 1.

Переходя от чисел к физическим величинам, сформулируем вышеприведенное утверждение в более общем виде: наибольшее количество значений m какой-либо величины (температуры, напряжения, тока и др.), которое может быть выражено двоичным кодом, зависит от числа используемых разрядов n как m=2n. Если n=3, как в рассмотренном примере, то получим 8 значений, включая ведущий 0.
Двоичный код является многошаговым кодом. Это означает, что при переходе с одного положения (значения) в другое могут изменятся несколько бит одновременно. Например число 3 в двоичном коде = 011. Число же 4 в двоичном коде = 100. Соответственно при переходе от 3 к 4 меняют свое состояние на противоположное все 3 бита одновременно. Считывание такого кода с кодового диска привело бы к тому, что из-за неизбежных отклонений (толеранцев) при производстве кодового диска изменение информации от каждой из дорожек в отдельности никогда не произойдет одновременно. Это в свою очередь привело бы к тому, что при переходе от одного числа к другому кратковременно будет выдана неверная информация. Так при вышеупомянутом переходе от числа 3 к числу 4 очень вероятна кратковременная выдача числа 7 когда, например, старший бит во время перехода поменял свое значение немного раньше чем остальные. Чтобы избежать этого, применяется так называемый одношаговый код, например так называемый Грей-код.

Код Грея

Грей-код является так называемым одношаговым кодом, т.е. при переходе от одного числа к другому всегда меняется лишь какой-то один из всех бит информации. Погрешность при считывании информации с механического кодового диска при переходе от одного числа к другому приведет лишь к тому, что переход от одного положения к другом будет лишь несколько смещен по времени, однако выдача совершенно неверного значения углового положения при переходе от одного положения к другому полностью исключается.
Преимуществом Грей-кода является также его способность зеркального отображения информации. Так инвертируя старший бит можно простым образом менять направление счета и таким образом подбирать к фактическому (физическому) направлению вращения оси. Изменение направления счета таким образом может легко изменяться управляя так называемым входом ” Complement “. Выдаваемое значение может таким образом быть возврастающим или спадающим при одном и том же физическом направлении вращения оси.
Поскольку информация выраженая в Грей-коде имеет чисто кодированный характер не несущей реальной числовой информации должен он перед дальнейшей обработкой сперва преобразован в стандартный бинарный код. Осуществляется это при помощи преобразователя кода (декодера Грей-Бинар) который к счастью легко реализируется с помощью цепи из логических элементов «исключающее или» (XOR) как програмным так и аппаратным способом.

Соответствие десятичных чисел в диапазоне от 0 до 15 двоичному коду и коду Грея

Двоичное кодирование Кодирование по методу Грея
Десятичный код
Двоичное значение Шестнадц. значение Десятичный код Двоичное значение Шестнадц. значение
0 0000 0h 0 0000 0h
1 0001 1h 1 0001 1h
2 0010 2h 3 0011 3h
3 0011 3h 2 0010 2h
4 0100 4h 6 0110 6h
5 0101 5h 7 0111 7h
6 0110 6h 5 0101 5h
7 0111 7h 4 0100 4h
8 1000 8h 12 1100 Ch
9 1001 9h 13 1101 Dh
10 1010 Ah 15 1111 Fh
11 1011 Bh 14 1110 Eh
12 1100 Ch 10 1010 Ah
13 1101 Dh 11 1011 Bh
14 1110 Eh 9 1001 9h
15 1111 Fh 8 1000 8h

Преобразование кода Грея в привычный бинарный код можно осуществить используя простую схему с инверторами и логическими элементами “исключающее или” как показано ниже:

Код Gray-Excess

Обычный одношаговый Грей-код подходит для разрешений, которые могут быть представлены в виде числа возведенного в степень 2. В случаях где надо реализовать другие разрешения из обычного Грей-кода вырезается и используется средний его участок. Таким образом сохраняется «одношаговость» кода. Однако числовой диапазон начинается не с нуля, а смещяется на определенное значение. При обработке информации от генерируемого сигнала отнимается половина разницы между первоначальным и редуцированным разрешением. Такие разрешения как например 360? для выражения угла часто реализируются этим методом. Так 9-ти битный Грей-код равный 512 шагов, урезанный с обеих сторон на 76 шагов будет равен 360°.

Расшифровка бинарного кода применяется для перевода с машинного языка на обычный. Онлайн инструменты работают быстро, хотя и вручную это сделать несложно.

Бинарный или двоичный код используется для передачи информации в цифровом виде. Набор из всего лишь двух символов, например 1 и 0, позволяет зашифровать любую информацию, будь то текст, цифры или изображение.

Как шифровать бинарным кодом

Для ручного перевода в бинарный код любых символов используются таблицы, в которых каждому символу присвоен двоичный код в виде нулей и единиц. Наиболее распространенной системой кодировки является ASCII, в которой применяется 8-ми битная запись кода.

В базовой таблице приведены бинарные коды для латинской азбуки, цифр и некоторых символов.

В расширенную таблицу добавлена бинарная интерпретация кириллицы и дополнительных знаков.

Для перевода из двоичного кода в текст или цифры достаточно выбирать нужные коды из таблиц. Но, естественно, вручную такую работу выполнять долго. И ошибки, к тому же, неизбежны. Компьютер справляется с расшифровкой куда быстрее. И мы даже не задумываемся, набирая на экране текст, что в это момент производится перевод текста в бинарный код.

Перевод бинарного числа в десятичное

Для ручного перевода числа из бинарной системы счисления в десятичную можно использовать довольно простой алгоритм:

  1. Ниже бинарного числа, начиная с крайней правой цифры, написать цифру 2 в возрастающих степенях.
  2. Степени числа 2 умножить на соответствующую цифру бинарного числа (1 или 0).
  3. Получившиеся значения сложить.

Вот как этот алгоритм выглядит на бумаге:

Онлайн сервисы для бинарной расшифровки

Если все же требуется увидеть расшифрованный бинарный код, либо, наоборот, перевести текст в двоичную форму, проще всего использовать онлайн-сервисы, предназначенные для этих целей.

Два окна, привычных для онлайн-переводов позволяют практически одновременно увидеть оба варианта текста в обычной и бинарной форме. И расшифровка осуществляется в обе стороны. Ввод текста производится простым копированием и вставкой.

Компьютеры не понимают слов и цифр так, как это делают люди. Современное программное обеспечение позволяет конечному пользователю игнорировать это, но на самых низких уровнях ваш компьютер оперирует двоичным электрическим сигналом, который имеет только два состояния : есть ток или нет тока. Чтобы «понять» сложные данные, ваш компьютер должен закодировать их в двоичном формате.

Двоичная система основывается на двух цифрах – 1 и 0, соответствующим состояниям включения и выключения, которые ваш компьютер может понять. Вероятно, вы знакомы с десятичной системой. Она использует десять цифр – от 0 до 9, а затем переходит к следующему порядку, чтобы сформировать двузначные числа, причем цифра из каждого следующего порядка в десять раз больше, чем предыдущая. Двоичная система аналогична, причем каждая цифра в два раза больше, чем предыдущая.

Подсчет в двоичном формате

В двоичном выражении первая цифра равноценна 1 из десятичной системы. Вторая цифра равна 2, третья – 4, четвертая – 8, и так далее – удваивается каждый раз. Добавление всех этих значений даст вам число в десятичном формате.

1111 (в двоичном формате) = 8 + 4 + 2 + 1 = 15 (в десятичной системе)

Учет 0 даёт нам 16 возможных значений для четырех двоичных битов. Переместитесь на 8 бит, и вы получите 256 возможных значений. Это занимает намного больше места для представления, поскольку четыре цифры в десятичной форме дают нам 10000 возможных значений. Конечно, бинарный код занимает больше места, но компьютеры понимают двоичные файлы намного лучше, чем десятичную систему. И для некоторых вещей, таких как логическая обработка, двоичный код лучше десятичного.

Следует сказать, что существует ещё одна базовая система, которая используется в программировании: шестнадцатеричная . Хотя компьютеры не работают в шестнадцатеричном формате, программисты используют её для представления двоичных адресов в удобочитаемом формате при написании кода. Это связано с тем, что две цифры шестнадцатеричного числа могут представлять собой целый байт, то есть заменяют восемь цифр в двоичном формате. Шестнадцатеричная система использует цифры 0-9, а также буквы от A до F, чтобы получить дополнительные шесть цифр.

Почему компьютеры используют двоичные файлы

Короткий ответ: аппаратное обеспечение и законы физики. Каждый символ в вашем компьютере является электрическим сигналом, и в первые дни вычислений измерять электрические сигналы было намного сложнее. Было более разумно различать только «включенное» состояние, представленное отрицательным зарядом, и «выключенное» состояние, представленное положительным зарядом.

Для тех, кто не знает, почему «выключено» представлено положительным зарядом, это связано с тем, что электроны имеют отрицательный заряд, а больше электронов – больше тока с отрицательным зарядом.

Таким образом, ранние компьютеры размером с комнату использовали двоичные файлы для создания своих систем, и хотя они использовали более старое, более громоздкое оборудование, они работали на тех же фундаментальных принципах. Современные компьютеры используют, так называемый, транзистор для выполнения расчетов с двоичным кодом.

Вот схема типичного транзистора:

По сути, он позволяет току течь от источника к стоку, если в воротах есть ток. Это формирует двоичный ключ. Производители могут создавать эти транзисторы невероятно малыми – вплоть до 5 нанометров или размером с две нити ДНК. Это то, как работают современные процессоры, и даже они могут страдать от проблем с различением включенного и выключенного состояния (хотя это связано с их нереальным молекулярным размером, подверженным странностям квантовой механики ).

Почему только двоичная система

Поэтому вы можете подумать: «Почему только 0 и 1? Почему бы не добавить ещё одну цифру?». Хотя отчасти это связано с традициями создания компьютеров, вместе с тем, добавление ещё одной цифры означало бы необходимость выделять ещё одно состояние тока, а не только «выключен» или «включен».

Проблема здесь в том, что если вы хотите использовать несколько уровней напряжения, вам нужен способ легко выполнять вычисления с ними, а современное аппаратное обеспечение, способное на это, не жизнеспособно как замена двоичных вычислений. Например, существует, так называемый, тройной компьютер , разработанный в 1950-х годах, но разработка на том и прекратилась. Тернарная логика более эффективна, чем двоичная, но пока ещё нет эффективной замены бинарного транзистора или, по крайней мере, нет транзистора столь же крошечных масштабов, что и двоичные.

Причина, по которой мы не можем использовать тройную логику, сводится к тому, как транзисторы соединяются в компьютере и как они используются для математических вычислений. Транзистор получает информацию на два входа, выполняет операцию и возвращает результат на один выход.

Таким образом, бинарная математика проще для компьютера, чем что-либо ещё. Двоичная логика легко преобразуется в двоичные системы, причем True и False соответствуют состояниям Вкл и Выкл .

Бинарная таблица истинности, работающая на двоичной логике, будет иметь четыре возможных выхода для каждой фундаментальной операции. Но, поскольку тройные ворота используют три входа, тройная таблица истинности имела бы 9 или более. В то время как бинарная система имеет 16 возможных операторов (2^2^2), троичная система имела бы 19683 (3^3^3). Масштабирование становится проблемой, поскольку, хотя троичность более эффективна, она также экспоненциально более сложна.

Кто знает? В будущем мы вполне возможно увидим тройничные компьютеры, поскольку бинарная логика столкнулась с проблемами миниатюризации. Пока же мир будет продолжать работать в двоичном режиме.

Множество символов, с помощью которых записывается текст, называется алфавитом .

Число символов в алфавите – это его мощность .

Формула определения количества информации: N = 2 b ,

где N – мощность алфавита (количество символов),

b – количество бит (информационный вес символа).

В алфавит мощностью 256 символов можно поместить практически все необходимые символы. Такой алфавит называется достаточным.

Т.к. 256 = 2 8 , то вес 1 символа – 8 бит.

Единице измерения 8 бит присвоили название 1 байт:

1 байт = 8 бит.

Двоичный код каждого символа в компьютерном тексте занимает 1 байт памяти.

Каким же образом текстовая информация представлена в памяти компьютера?

Удобство побайтового кодирования символов очевидно, поскольку байт - наименьшая адресуемая часть памяти и, следовательно, процессор может обратиться к каждому символу отдельно, выполняя обработку текста. С другой стороны, 256 символов – это вполне достаточное количество для представления самой разнообразной символьной информации.

Теперь возникает вопрос, какой именно восьмиразрядный двоичный код поставить в соответствие каждому символу.

Понятно, что это дело условное, можно придумать множество способов кодировки.

Все символы компьютерного алфавита пронумерованы от 0 до 255. Каждому номеру соответствует восьмиразрядный двоичный код от 00000000 до 11111111. Этот код просто порядковый номер символа в двоичной системе счисления.

Таблица, в которой всем символам компьютерного алфавита поставлены в соответствие порядковые номера, называется таблицей кодировки.

Для разных типов ЭВМ используются различные таблицы кодировки.

Международным стандартом для ПК стала таблица ASCII (читается аски) (Американский стандартный код для информационного обмена).

Таблица кодов ASCII делится на две части.

Международным стандартом является лишь первая половина таблицы, т.е. символы с номерами от 0 (00000000), до 127 (01111111).

Структура таблицы кодировки ASCII

Порядковый номер

Код

Символ

0 - 31

00000000 - 00011111

Символы с номерами от 0 до 31 принято называть управляющими.
Их функция – управление процессом вывода текста на экран или печать, подача звукового сигнала, разметка текста и т.п.

32 - 127

00100000 - 01111111

Стандартная часть таблицы (английский). Сюда входят строчные и прописные буквы латинского алфавита, десятичные цифры, знаки препинания, всевозможные скобки, коммерческие и другие символы.
Символ 32 - пробел, т.е. пустая позиция в тексте.
Все остальные отражаются определенными знаками.

128 - 255

10000000 - 11111111

Альтернативная часть таблицы (русская).
Вторая половина кодовой таблицы ASCII, называемая кодовой страницей (128 кодов, начиная с 10000000 и кончая 11111111), может иметь различные варианты, каждый вариант имеет свой номер.
Кодовая страница в первую очередь используется для размещения национальных алфавитов, отличных от латинского. В русских национальных кодировках в этой части таблицы размещаются символы русского алфавита.

Первая половина таблицы кодов ASCII


Обращаю ваше внимание на то, что в таблице кодировки буквы (прописные и строчные) располагаются в алфавитном порядке, а цифры упорядочены по возрастанию значений. Такое соблюдение лексикографического порядка в расположении символов называется принципом последовательного кодирования алфавита.

Для букв русского алфавита также соблюдается принцип последовательного кодирования.

Вторая половина таблицы кодов ASCII


К сожалению, в настоящее время существуют пять различных кодировок кириллицы (КОИ8-Р, Windows. MS-DOS, Macintosh и ISO). Из-за этого часто возникают проблемы с переносом русского текста с одного компьютера на другой, из одной программной системы в другую.

Хронологически одним из первых стандартов кодирования русских букв на компьютерах был КОИ8 ("Код обмена информацией, 8-битный"). Эта кодировка применялась еще в 70-ые годы на компьютерах серии ЕС ЭВМ, а с середины 80-х стала использоваться в первых русифицированных версиях операционной системы UNIX.

От начала 90-х годов, времени господства операционной системы MS DOS, остается кодировка CP866 ("CP" означает "Code Page", "кодовая страница").

Компьютеры фирмы Apple, работающие под управлением операционной системы Mac OS, используют свою собственную кодировку Mac.

Кроме того, Международная организация по стандартизации (International Standards Organization, ISO) утвердила в качестве стандарта для русского языка еще одну кодировку под названием ISO 8859-5.

Наиболее распространенной в настоящее время является кодировка Microsoft Windows, обозначаемая сокращением CP1251.

С конца 90-х годов проблема стандартизации символьного кодирования решается введением нового международного стандарта, который называется Unicode . Это 16-разрядная кодировка, т.е. в ней на каждый символ отводится 2 байта памяти. Конечно, при этом объем занимаемой памяти увеличивается в 2 раза. Но зато такая кодовая таблица допускает включение до 65536 символов. Полная спецификация стандарта Unicode включает в себя все существующие, вымершие и искусственно созданные алфавиты мира, а также множество математических, музыкальных, химических и прочих символов.

Попробуем с помощью таблицы ASCII представить, как будут выглядеть слова в памяти компьютера.

Внутреннее представление слов в памяти компьютера

Иногда бывает так, что текст, состоящий из букв русского алфавита, полученный с другого компьютера, невозможно прочитать - на экране монитора видна какая-то "абракадабра". Это происходит оттого, что на компьютерах применяется разная кодировка символов русского языка.