Внешний накопитель данных. Накопитель данных




Доброго дня.

Для хранения и переноса больших объемов информации довольно удобно использовать внешние жесткие диски . Многие, конечно, возразят - ведь есть "облака". Но далеко не всю информацию можно там хранить (есть конфиденциальность и все дела...), да и интернет у нас не везде и всегда быстр.

Согласитесь, удобно, когда на внешнем носителе у вас есть музыка, фотки, фильмы, игры и придя в гости, вы можете быстренько подсоединить к ПК свой диск и включить проигрывание приятной композиции...

В этой статье хочу привести несколько важных моментов (на мой взгляд), на которые следует обратить внимание при выборе и покупке внешнего диска. Я, конечно, не был никогда на заводе изготовителе подобных устройств, и тем не менее, кое какой опыт () есть: на работе приходится иметь дело с тремя десятками подобных носителей, да и дома - еще десяток.

👉 Кстати!

Приобрести некоторые модели дисков можно со скидками

7 моментов при выборе внешнего HDD

⑴ Объем накопителя

Чем больше - тем лучше!

Это правило актуально и для внешних жестких дисков (места никогда много не бывает). На сегодняшний день, одни из самых популярных объемов - это 1÷4 ТБ (и самых дешевых в плане цена/кол-во ГБ). Поэтому, рекомендую присматриваться к дискам именно этого объема.

Про диски 5-8 ТБ и более...

Такие тоже есть в сегодняшней продаже. Но есть пару "но", на которые я бы порекомендовал обратить внимание:

  • не "обкатанные" технологии - надежность таких дисков, часто, оставляет желать лучшего. Да и вообще, я бы не рекомендовал сразу хвататься за любые новые и большого объема диски (пока еще производители доведут технологию их изготовления до совершенства...);
  • таким дискам часто необходимо дополнительное питание. Если вы покупаете диск для ноутбука или др. переносного гаджета (который хотите подключать только к USB порту) - то подобные диски создадут вам лишние "проблемы"...

⑵ Про интерфейс подключения

Самые популярные интерфейсы сейчас в продаже - это USB 2.0 и USB 3.0. Рекомендую сразу же "прицеливаться" и выбирать USB 3.0 (до 5 Гбит/с; разницу в скорости заметите даже на глаз).

На практике, обычно, скорость копирования/чтения с внешнего диска по USB 2.0 - достигает 30-40 Мб/с, по USB 3.0 - до 80-120 Мб/с. Т.е. разница есть, тем более, что диск USB 3.0 - универсальный, и его можно подключить даже к тем устройствам, которые поддерживают только USB 2.0.

Кстати, чтобы отличить порт USB 2.0 от USB 3.0 - обратите внимание на цвет. Сейчас большинство производителей помечает порты USB 3.0 синим цветом.

Как отличить порт USB 3.0 от порта USB 2.0 (USB 3.0. порт помечен синим цветом)

Кстати , если у вас на ноутбуке (компьютере) есть новый порт USB Type-C (скорость до 10 Гбит/c) - то сейчас в продаже начинают появляться диски с подобным интерфейсом, и есть смысл присмотреться к таким моделькам.

Также отмечу, что есть всевозможные переходники для подключения дисков с USB 3.0 (например) к новому порту USB Type-C.

Дополнение : есть также и другие стандарты SATA, eSATA, FireWire, Thunderbolt. Встречаются они гораздо реже, чем USB и останавливаться на них не вижу смысла, т.к. абсолютное большинство пользователей устроит USB интерфейс.

⑶ Про отдельный блок питания

Есть диски как с дополнительным источником питания, так и без оного (работающие от питания USB порта). Как правило, диски, работающие только от USB порта не превышают объемом 4-5 ТБ (это максимум, что я встречал в продаже).

Отмечу, что диски с дополнительным адаптером работают быстрее и стабильнее. Но, все-таки, лишние провода создают неудобство, и не всегда есть возможность подключить диск к розетке - например, при использовании диска в работе за ноутбуком.

Есть еще одна проблема, на которую стоит обратить внимание : не всегда и не всем моделям дисков хватает питания от USB порта (например, в тех случаях, когда устройство работает от небольшого нетбука или к USB подключен не только диск - питания для HDD может не хватать!). В случаях нехватки питания - диск может просто стать "невидимым". Об этом я указывал в этой статье:

Из практики...

Дискам, которым хватало питания от USB порта: Seagate Expansion 1-2 TB (не путать с линейкой Portable Slim), WD Passport Ultra 1-2 TB, Toshiba Canvio 1-2 TB.

Диски, с которыми были проблемы (и время от времени они становились невидимыми в Windows): Samsung 1-2 TB, Seagate Portable Slim 1-2 TB, A-DATA 1-2 TB, Transcend StoreJet 1-2 TB.

В принципе, если столкнетесь с нехваткой питания, можно попробовать использовать USB разветвитель с блоком питания. Такое устройство позволит подключать к одному порту USB - сразу несколько дисков, и всем им хватит питания (даже при подключении к "слабенькому" нетбуку).

USB разветвитель с блоком питания

⑷ Про форм-фактор // размер

Форм-фактор - задает размер диска. Лет 10-15 назад - специальный класс как "Внешние жесткий диски" отсутствовал, и многие использовали обычные HDD, уставленные в специальный бокс (коробку) - т.е. собирали самостоятельно такой переносной диск. Оттуда и вышли два самых популярных форм-фактора внешних HDD - 2,5 и 3,5 дюйма.

3,5"

Большие, тяжелые и габаритные диски. Наиболее емкие на сегодняшний день (емкость одного HDD достигает 8 ТБ и более!). Больше всего подходят для стационарного ПК (либо к ноутбуку, который редко переносят). Как правило, обеспечивают более высокую скорость передачи данных (по сравнению с 2,5").

Подобные диски редко выпускаются в ударопрочных корпусах, поэтому они крайне бояться тряски или вибраций. Еще одна особенность: они не могут работать без блока питания (совсем!). Лишние провода не добавляют им удобства...

Стационарный внешний жесткий диск 3,5" (обратите внимание на габариты) - подключается к сети 220В через блок питания

2,5"

Наиболее популярный и востребованный тип дисков. Их габариты сопоставимы с обычным смартфоном (чуть больше). Большинству дисков хватает питания USB порта для полноценной работы. Удобны как в дороге, так и дома, для подключения как к ПК, так и к ноутбуку (да и вообще, к любой технике с USB портом).

Нередко, когда подобные диски помещены в спец. ударопрочный корпус, позволяющий им продлить "живучесть" (актуально для дисков, которые часто бывают в дороге и подвергаются вибрациям).

Из минусов : их емкость несколько ниже, чем в 3,5" дисков (на сегодняшний день достигает 5 ТБ). Также некоторым моделям дисков не всегда хватает питания USB порта, и они "отваливаются" при работе (т.е. становятся невидимыми для ОС Windows).

⑸ Скорость работы диска

Ваша скорость работы с диском зависит от нескольких составляющих:

  1. от интерфейса : на сегодняшний день наиболее лучший вариант по соотношению цены/скорости - это стандарт USB 3.1 (набирает также популярность USB Type-C);
  2. от скорости вращения шпинделя : во внешних накопителях встречаются 5400 об/мин, 7200 об/мин и 4200 об/мин. Чем выше обороты - тем выше скорость считывания информации (и тем сильнее шумит диск, и сильнее греется). Обычно 2,5" диски идут 4200 и 5400 об/мин., диски 3,5" - 7200 об/мин.;
  3. от размера кэша (временной памяти, позволяющей получать быстрый доступ к самой часто-используемой информации) : сейчас наиболее популярные диски с кэшем 8-64 МБ. Естественно, что чем выше кэш - тем диск дороже...

Личное мнение : в большинстве случаев, внешние диски покупаются для складирования различных мультимедиа данных - музыки, фильмов, фото и т.д. И при таких задачах, разница в скорости работы диска с 7200 об/мин и 5400 об/мин - не существенна, и не играет большой роли.

Единственным моментом (в плане скорости) при выборе, я бы акцентировал внимание на наличие интерфейса USB 3.1 (а то в продаже еще достаточно много дисков с интерфейсом USB 2.0).

⑹ Защита от влаги и мех. повреждений. Пароли и защита от взлома

Некоторые модели дисков имеют дополнительную защиту от ударов, от пыли, влаги и пр. Естественно, подобные диски стоят дороже обычных, иногда, стоимость выше в несколько раз!

На мой взгляд, все эти навороты - если и помогают, то только уж от совсем незначительных происшествий. Если диск ждет сильный удар - то корпус хоть и смягчит его, но сильно делу не поможет.

Исходя из своей практики "печальных" случаев, скажу, что ударопрочный корпус у моделей, стоимость которых не превышает 350$, не предотвращала повреждение диска. Более дорогие диски, не использовал, и критиковать заочно не могу 👀.

На мой взгляд, если и покупать подобные диски - то за стоимость не выше чем на 10-20% от стоимости других дисков (и уж точно подобная защита не стоит как 2-3 обычных диска).

Добавлю, что нередко диски выходят из строя и без всяких ударов и сотрясений. Я бы больше рекомендовал обращать внимание на надежность линейки (модельного ряда HDD) и отзывов о ней.

Что касается всевозможных парольных защит накопителя, то диск можно защитить и с помощью бесплатных утилит (причем, неизвестно, что будет надежнее ).

👉 В помощь!

О том, как можете узнать в этой статье.

⑺ Про производителей, что понадежнее

Понятно, что всё, что написано ниже - это условные и не очень-то репрезентативные данные. Т.к. чтобы сделать реальную статистику самых надежных дисков - необходимо протестировать тысячи дисков (а не несколько десятков, как я). И тем не менее, выскажу свою точку зрения...

  1. WD My Passport - одни из самых надежных, не один диск из этой линейки не вышел из строя. Да и к работе нареканий особых нет: не шумят, не греются, всегда "видимы". Ценник на 10-15% на них выше, чем на другие аналогичные диски, но они того стоят. Добавлю, что также их габариты несколько больше, чем у тех же Seagate Portable Slim (но на мой взгляд это не существенно) ...
  2. WD My Cloud - в принципе, все то же самое, что сказано выше, актуально и для этой линейки;
  3. Toshiba Canvio - несмотря на то, что диски не так давно появились на рынке, нареканий к ним особо нет. Пока ни с одним из 4-х дисков проблем не было;
  4. Seagate Expansion - средние по качеству (5 из 7 дисков работают, 2 были сданы по гарантии, не проработали и года...). Проблем с "видимостью" нет, но отметил бы, что многие диски из этой линейки "шумят" при работе;
  5. Seagate Portable Slim - на мой взгляд, худшая линейка (везде, где встречается "Seagate Slim" - лучше остерегаться!). Возможно, что просто не повезло так мне, но 5 из 5 дисков пришли в негодность в течении 1,5 года после покупки;
  6. A-DATA - в целом работают (4 из 5 дисков проработали уже больше года), но дискам этого производителя не всегда хватает питания от USB при использовании на ноутбуках;
  7. Transcend StoreJet - интересный вариант т.к. их диски защищены спец. корпусом от легких сотрясений. По надежности никаких вопросов не возникало (правда, у меня их всего 2), есть проблема с "шумом" при работе и "видимостью" без доп. питания;
  8. Silicon Power (Armor) - отзыв негативный, т.к. 3 из 3 дисков не оправдали даже начальных ожиданий: скорость передачи данных невысока (даже при подключении к USB 3.0), часто "отваливаются" и становятся невидимыми. Не работа - а кошмар...

А чем пользуетесь вы?

Классификация запоминающих устройств

По устойчивости записи и возможности перезаписи ЗУ делятся на:

По типу доступа ЗУ делятся на:

  • Устройства с последовательным доступом (например, магнитные ленты).
  • Устройства с произвольным доступом (RAM) (например, магнитные диски).

По геометрическому исполнению:

  • дисковые (магнитные диски, оптические, магнитооптические);
  • ленточные (магнитные ленты , перфоленты);
  • барабанные (магнитные барабаны);
  • карточные (магнитные карты , перфокарты, флэш-карты, карты CDRAM и другие).

По физическому принципу:

Смотреть что такое "Накопитель данных" в других словарях:

    накопитель (данных) - Устройство записи и (или) воспроизведения сигналов данных. Примечания 1. В зависимости от системы записи и наименования носителя записи применяют видовые термины, например "магнитный накопитель", "оптический накопитель",… …

    накопитель (данных) - 377 накопитель (данных): Устройство записи и (или) воспроизведения сигналов данных. Примечания: 1. В зависимости от системы записи и наименования носителя записи применяют видовые термины, например «магнитный накопитель», «оптический накопитель» …

    накопитель на жестком магнитном диске - Устройство ввода вывода вычислительной машины, обеспечивающее вывод данных из ЭВМ, их преобразование, запись на жесткий магнитный диск для длительного хранения, считывание данных с магнитного диска и ввод их в ЭВМ. [ГОСТ 25868 91] накопитель на… … Справочник технического переводчика

    Устройство ввода вывода вычислительной машины, обеспечивающее вывод данных из ЭВМ, их преобразование, запись на гибкий магнитный диск для длительного хранения, считывание данных с гибкого магнитного диска и ввод их в ЭВМ. [ГОСТ 25868 91] Тематики … Справочник технического переводчика

    накопитель на магнитной ленте - Устройство ввода вывода вычислительной машины, обеспечивающее вывод данных из ЭВМ, их преобразование, запись на магнитную ленту для длительного хранения, считывание данных с магнитной ленты и ввод их в ЭВМ. [ГОСТ 25868 91] Тематики оборуд.… … Справочник технического переводчика

    Накопитель на жестких магнитных дисках (винчестер) - Накопитель на жестких магнитных дисках НЖМД, жесткий диск, хард, харддиск, HDD, HMDD или винчестер энергонезависимое, перезаписываемое компьютерное запоминающее устройство. Является основным накопителем данных практически во всех современных… … Официальная терминология

    Не следует путать с НДМГ компонентом ракетного топлива. Накопитель на гибких дисках (англ. … Википедия

    Запрос «HDD» перенаправляется сюда. Cм. также другие значения. Схема устройства накопителя на жёстких магнитных дисках. Накопитель на жёстких магнитных дисках, НЖМД, жёсткий диск, винчестер (англ. Hard (Magnetic) Disk Drive, HDD, HMDD; в… … Википедия

    Память переводов (ПП, англ. translation memory, TM иногда называемая «Накопитель переводов») база данных, содержащая набор ранее переведенных текстов. Одна запись в такой базе данных соответствует сегменту или «единице перевода» (англ.… … Википедия

    накопитель на гибком магнитном диске - 35 накопитель на гибком магнитном диске: Устройство ввода вывода вычислительной машины, обеспечивающее вывод данных из ЭВМ, их преобразование, запись на гибкий магнитный диск для длительного хранения, считывание данных с гибкого магнитного диска… … Словарь-справочник терминов нормативно-технической документации

Книги

  • Журнал «Мир ПК» №08/2014 , Мир ПК. В номере: Тема номера: Кирпичики будущего. Чтение в удовольствие Мы решили протестировать наиболее популярные модели электронных книг, чтобы рассказать читателям об их достоинствах и… электронная книга

03.03.2018

Накопитель данных. Внутренние и внешние накопители памяти. Виды накопителей памяти

Накопитель данных - это устройство, на котором сохраняются все компьютерные данные. Кроме накопителя, это устройство называют жестким диском или винчестером. Жесткий диск от обычного «гибкого» диска или другими словами, дискеты, отличает то, что запись информации происходит на жесткие пластины, выполненные из алюминия или керамики, а сверху они покрываются ферримагнитным материалом. Жесткие диски оснащены одной или несколькими пластинами на оси.

Накопитель данных (HDD) имеет в своем составе герметичный блок и электронную плату. Герметичный блок заполняется обыкновенным, очищенным от пыли воздухом, путем атмосферного давления, и в его оснащение входят все механические части. В состав кинематики накопителя данных входит один или несколько магнитных дисков , которые жестким методом закрепляются к шпинделю двигателя, а также система, отвечающая за позиционирование магнитных головок. Магнитная головка занимает место на одной из сторон двигающегося магнитного диска и в ее функциональные обязанности входит осуществление чтения и записывания данных с вращающейся поверхности магнитного диска. Сами головки прикреплены специальными держателями, а их движение осуществляется при помощи системы позиционирования между краем и центром диска. Достигнуть точного позиционирования магнитных головок возможно посредством сервоинформации, записанной на диске. Система позиционирования, считывая эту информацию способна определить силу тока, пропускаемую через катушку электромагнитного провода для того, чтобы магнитная головка смогла зафиксироваться над необходимой дорожкой.

После того, как будет произведено включение питания, процессор винчестера (накопителя) начинает тестировать электронику, впоследствии чего выдается команда для того, чтобы осуществился процесс непосредственного включения шпиндельного двигателя. Как только завершится инициализация, происходит тестирование позиционной системы, во время которого происходит перебор дорожек, в заданной последовательности. В случае, если тестирование прошло хорошо, жесткий диск отправляет сигнал о том, что он готов к работе. Для повышения уровня надежности хранения компьютерной информации , жесткие диски (накопители) оснащены специальной микропрограммой, которая занимается отслеживанием технологических параметров, доступных для программы считывания и анализа. Если компьютеру грозит сбой, то при помощи этой программы пользователь своевременно узнает об этом.

Кроме этого, накопителем данных является и гибридный жесткий диск, который состоит из традиционного жесткого диска , оснащенного дополнительной флэш-памятью. Данная флэш-память совершенно энергонезависима и ей отводится роль буфера, в котором сохраняются данные, наиболее часто используемые. В результате деятельности этого устройства уменьшается доступ к магнитному диску, что соответственно приводит к снижению потребления электроэнергии. Также повышается и уровень надежности сохранения информации, уменьшается время, требуемое для загрузки и для вывода системы из состояния спящего режима, а также значительно понижается температура и акустический шум, который издает жесткий диск.

Привлекательность USB-интерфейса в его простоте - достаточно воткнуть флешку или другой накопитель и можно работать, не требуется ни установки драйвера, ни других дополнительных действий. Развитие интерфейса и появление вначале USB 2.0, а затем и USB 3.0 резко повысило скорость обмена данными по этому каналу. Быстродействие теперь мало отличается от внутреннего, а их размеры не могут не радовать. Внешний накопитель памяти легко помещается на ладони, при этом он позволяет хранить сотни гигабайт информации.

Введение

1. Магнитные накопители

1.1 Накопители на магнитных дисках

2. Виды магнитных носителей

2.1 Гибкие магнитные диски

3. Оптические технологии

3.1 Компакт-диски

3.2 Носители DVD

Заключение

Список литературы

магнитный носитель жесткий магнитный

Введение

Выпускаемые накопители информации представляют собой гамму запоминающих устройств с различным принципом действия физическими и технически эксплуатационными характеристиками. Основным свойством и назначением накопителей информации является ее хранение и воспроизведение.

Запоминающие устройства принято делить на виды и категории в связи с их принципами функционирования, эксплуатационно-техническими, физическими, программными и др. характеристиками. Так, например, по принципам функционирования различают следующие виды устройств: электронные, магнитные, оптические и смешанные – магнитооптические.

Каждый тип устройств организован на основе соответствующей технологии хранения воспроизведения/записи цифровой информации . Поэтому, в связи с видом и техническим исполнением носителя информации различают: электронные, дисковые и ленточные устройства.

Магнитные диски используются как запоминающие устройства, позволяющие хранить информацию долговременно, при отключенном питании. Для работы с магнитными дисками используется устройство, называемое накопителем на магнитных дисках (НМД). Основные виды накопителей: накопители на гибких магнитных дисках (НГМД); накопители на жестких магнитных дисках (НЖМД); накопители на магнитной ленте (НМЛ); накопители CD-ROM, CD-RW, DVD.

Им соответствуют основные виды носителей: гибкие магнитные диски (Floppy Disk); жёсткие магнитные диски (Hard Disk); кассеты для стримеров и других НМЛ; диски CD-ROM, CD-R, CD-RW, DVD.


1. Магнитные накопители

Магнитные накопители являются важнейшей средой хранения информации в ЭВМ и разделяются на накопители на магнитных лентах (НМЛ) и накопители на магнитных дисках (НМД).

Обычно при магнитной записи используются импульсные сигналы. Битовая информация преобразуется в переменный ток в соответствии с чередованием нулей и единиц.

Этот ток поступает на магнитную головку и в зависимости от направления тока в обмотке головки в пространстве между головкой и носителем возникает соответствующий магнитный поток, замыкающийся через элементарную область намагниченности (домен). Собственные магнитные поля доменов ориентируются в соответствии с направлением внешнего магнитного поля. При снятии внешнего поля это состояние доменов не меняется (память долговременного хранения).

Основной критерий оценки накопителей на магнитных носителях - поверхностная плотность записи. Она определяется как произведение линейной плотности записи вдоль дорожки, выражаемой в битах на дюйм, и количества дорожек на дюйм. В результате поверхностная плотность записи выражается в мегабитах (Мбит/дюйм2) или гигабитах (Гбит/дюйм2) на квадратный дюйм.

В современных накопителях размером 3,5 дюйма величина этого параметра составляет 10-20 Гбит/дюйм, а в экспериментальных моделях достигает 40 Гбит/дюйм. Это позволяет выпускать накопители емкостью более 400 Гбайт.

1.1 Накопители на магнитных дисках (НМД)

В НМД предусмотрена аналогичная НМЛ возможность последовательного доступа к информации. Накопитель на магнитных дисках сочетает в себе несколько устройств последовательного доступа, причем сокращение времени поиска данных обеспечивается за счет независимости доступа к записи от ее расположения относительно других записей.

Технология НМД. В НМД в качестве носителей данных используется пакет металлических дисков (или платтеров), закрепленных на стержне, вокруг которого они вращаются с постоянной скоростью. Поверхность магнитного диска, покрытая ферромагнитным слоем, называется рабочей.

Количество магнитных головок равно числу рабочих поверхностей на одном пакете дисков. Если пакет состоит из 11 дисков, то механизм доступа состоит из 10 держателей с двумя магнитными головками на каждом из них. Держатели магнитных головок объединены в единый блок таким образом, чтобы обеспечить их синхронное перемещение вдоль всех цилиндров. Совокупность дорожек, достигаемых при фиксированном положении блока головок, называется цилиндром. Расстояние между цилиндрами (дорожками) называют подача, или шаг дорожки. Процесс управления плотностью записи называется прекомпенсацией. Для компенсации различной плотности записи используют метод зонно-секторной записи (ZoneBitRecording), где все пространство диска делится на зоны (восемь и более), в каждую из которых входит обычно от 20 до 30 цилиндров с одинаковым количеством секторов.

В зоне, расположенной на внешнем радиусе (младшая зона), записывается большее количество секторов (блоков) на дорожку (120-96). К центру диска количество секторов уменьшается и в самой старшей зоне достигает 64-56. Так как скорость вращения диска - постоянная величина, то от внешних зон при одном обороте диска поступает больше информации, чем от зон внутренних. Эта неравномерность поступления информации компенсируется увеличением скорости работы канала считывания/преобразования данных и использования специальных перестраиваемых фильтров для частотной коррекции по зонам. При этом емкость жестких дисков можно увеличить приблизительно на 30 %.


1.2 Накопители на жестких магнитных дисках

Конструкция и функционирование устройства. В НЖМД внутри накопителя устанавливается несколько пластин (дисков), или платтеров. Пластины имеют диаметр 5,25 или 3,5 дюйма. В новых разработках пытаются использовать стекло, поскольку оно имеет большее сопротивление и позволит делать диски тоньше, чем алюминиевые аналоги.

Характеристики НЖМД. Характеристики жесткого диска очень важны для оценки быстродействия системы в целом. Эффективное быстродействие жесткого диска зависит от ряда факторов.

Решающим среди них является скорость вращения дисков, которая измеряется в rpm(об/мин) и непосредственно влияет на скорость передачи данных в НЖМД. В то время как наиболее быстрые НЖМД с интерфейсом EIDEимели скорость около 5400 об/мин, SCSI-НЖМД способен разогнаться до 7200 об/мин. Среднее время доступа дисковода - это интервал между моментом запроса к данным и моментом доступа к ним (измеряется в миллисекундах (мс)). Время доступа включает фактическое время поиска, время ожидания и время обработки данных.

Время поиска - итоговое время, необходимое для поиска головкой чтения/записи физического расположения данных на диске. Время ожидания является средним временем доступа к сектору в процессе вращения. Оно легко рассчитывается по скорости вращения оси дисковода как время полуоборота.

Скорость передачи диска (иногда называемая media-скоростью) - это скорость, с которой данные передаются на дисковод и считываются с него. Она зависит от частоты записи и обычно измеряется в мегабайтах в секунду (MBps, Мбайт/с).

Скорость передачи данных (или DTR- DataTransferRate) - это скорость, с которой компьютер может предавать данные через шины (обычно IDE/EIDEили SCSI) на ЦП. Некоторые поставщики данных указывают внутреннюю скорость передачи, передачи данных от головки до встроенного дискового буфера. Другие приводят скорость передачи пакета данных, максимальную скорость передачи при идеальных параметрах или при маленькой длительности. Более важна скорость внешней передачи данных.

2. Виды магнитных носителей

2.1 Гибкие магнитные диски

Дискета состоит из круглой полимерной подложки, покрытой с обеих сторон магнитным окислом и помещенной в пластиковую упаковку, на внутреннюю поверхность которой нанесено очищающее покрытие. В упаковке с двух сторон сделаны радиальные прорези, через которые головки считывания/записи дисковода получают доступ к диску.

Дискеты каждого типоразмера, как правило, двусторонние. Одинарная плотность записи дорожек составляет 48 tрi(дорожек на дюйм), двойная - 96 tpiи высокая - обычно 135 tpi.

Когда диск 3,5" вставляется в устройство, защитная металлическая заслонка отодвигается, шпиндель дисковода входит в среднее отверстие, а боковой штырек привода помещается в прямоугольное отверстие позиционирования, расположенное рядом. Двигатель вращает диск с частотой 300 об/мин.

Дисководы для гибких дискет используют так называемый «трекинг разомкнутого цикла», они фактически не ищут дорожки, а просто устанавливают головку в «правильную» позицию. В жестких дисках, наоборот, двигатели сервомотора используют головки для проверки позиционирования, что позволяет производить запись с поперечной плотностью во много сотен раз выше, чем это возможно на гибком диске.

Головка перемещается ведущим винтом, который в свою очередь управляется шаговым двигателем, и, когда винт поворачивается на определенный угол, головка проходит установленное расстояние. Плотность записи данных на дискету ограничивается точностью шагового двигателя, в частности, это означает 135 tpiдля дискет 1,44 Мбайт. Диск имеет четыре датчика: дисковый двигатель; защита от записи; наличие диска; и датчик дорожки 00.

2.2 Внешние накопители на НЖМД

В последние годы распространились технологии размещения стандартных НЖМД в мобильный (переносимый) внешний футляр (бокс), который присоединяется к компьютеру через внешний интерфейс.

Поскольку сегодня емкость НЖМД измеряется в гигабайтах, а размеры мультимедийных и графических файлов - десятками мегабайт, вместимость от 100 до 150 Мбайт вполне достаточна, чтобы носитель занял традиционную нишу НГМД - перемещение нескольких файлов между пользователями, архивация или резервное копирование отдельных файлов или каталогов и пересылка файлов почтой. В этом диапазоне предлагается ряд устройств для следующих поколений гибких дисков, которые используют гибкие магнитные носители и традиционную магнитную технологию хранения.

Zi р-накопители . Без сомнения, самое популярное устройство в этой категории - дисковод ZipIomega, впервые выпущенный в 1995 г. Высокая эффективность накопителей Zipобеспечивается, во-первых, высокой скоростью вращения (3000 об/мин), а во-вторых, - технологией, предложенной Iomega(которая основана на аэродинамическом эффекте Бернулли), при этом гибкий диск «присасывается» к головке чтения/записи, а не наоборот, как в НЖМД. Диски Zipмягки, подобно гибким дискам, что делает их дешевыми и менее восприимчивыми к ударным нагрузкам.

Zip-накопители обладают вместимостью 94 Мбайт и выпускаются как во встроенных, так и во внешних версиях. Внутренние модули соответствуют форм-фактору 3,5", используют интерфейс SCSIили АТАРI, среднее время поиска - 29 мс, скорость передачи данных - 1,4 Кбайт/с.

Супердискеты. Диапазону от 200 до 300 Мбайт лучше всего соответствует понятие территория супердискет. Вместимость таких устройств в 2 раза выше, чем у заменителя НГМД, и более характерна для НЖМД, чем для гибкого диска . Устройства в этой группе используют магнитную или магнитооптическую технологию.

В 2001 г. Маtsushitaобъявляет технологию FD32МВ, которая дает опцию высокоплотного форматирования обычной НВ-дискеты на 1,44 Мбайт, чтобы обеспечить способность хранения до 32 Мбайт на диске. Технология заключается в увеличении плотности записи каждой дорожки на НD-дискете, используя супердисковую магнитную головку для чтения и обычную магнитную головку для записи данных. В то время как на обычной дискете размещается 80 круговых дорожек данных, в FD32МВ это число увеличивается до 777. В то же самое время подача дорожки от 187,5 мкм для дискеты НDуменьшается до примерно 18,8 мкм.

Сменные жесткие диски . Следующий интервал вместимости (от 500 Мбайт до 1 Гбайт) достаточен для резервного копирования или архивации дискового раздела (партиции) разумно большого размера.

В диапазоне свыше 1 Гбайт технология сменных дисков заимствуется от обычных НЖМД. Вышедший в середине 1996 г. дисковод IomegaJaz(сменный жесткий диск на 1 Гбайт) был воспринят, как инновационное изделие. Когда Jazпоявился на рынке, сразу стало ясно, где следует его использовать - пользователи смогли создавать аудио- и видеопрезентации и передавать между компьютерами. Кроме того, такие презентации могли быть запущены непосредственно с носителя Jaz,без необходимости переписывания данных на НЖМД.

Флэш-память . Не относясь к магнитным носителям, флэш-память работает одновременно подобно оперативной памяти и НЖМД. Напоминает обычную память, имея форму дискретных чипов, модулей, или карточек с памятью, где так же, как в DRАМ и SRАМ, биты данных сохраняются в ячейках памяти. Однако так же, как НЖМД, флэш-память энергонезависима и сохраняет данные, даже когда питание выключено.

Технология ЕТОХ является доминирующей flash-технологией, занимающей около 70 % всего рынка энергонезависимой памяти. Данные вводятся во flash-память побитно, побайтно или словами с помощью операции, которая называется программированием.

Хотя электронные флэш-диски являются небольшими, быстродействующими, потребляют мало энергии и способны выдерживать удары до 2000gбез разрушения данных, их ограниченная вместимость делает их несоответствующей альтернативой жесткому диску ПК.

3. Оптические технологии

3.1 Компакт-диски

Вначале компакт-диски использовались исключительно в высококачественной звуковоспроизводящей аппаратуре, заменяя устаревшие виниловые пластинки и магнитофонные кассеты. Однако вскоре лазерные диски стали использоваться и на персональных компьютерах. Компьютерные лазерные диски были названы СD-RОМ. В конце 90-х гг. устройство для работы с СD-RОМ стало стандартным компонентом любого персонального компьютера , а подавляющее большинство программ стало распространяться на компакт-дисках.

Накопитель на компакт-диске (CD-ROM).Считывание информации с компакт-диска происходит с помощью лазерного луча меньшей мощности. Сервомотор по команде от внутреннего микропроцессора привода перемещает отражающее зеркало или призму. Это позволяет сосредоточить лазерный луч на конкретной дорожке. Лазер излучает когерентный свет, состоящий из синхронизированных волн одинаковой длины. Луч, попадая на отражающую свет поверхность (площадку), через расщепляющую призму отклоняется на фотодетектор, который интерпретирует это как «1», а попадая в углубление (пит), рассеивается ипоглощается - фотодетектор фиксирует «0».

В то время как магнитные диски вращаются с постоянным числом оборотов в минуту, т. е. с неизменной угловой скоростью, компакт-диск вращается обычно с переменной угловой скоростью, чтобы обеспечить постоянную линейную скорость при чтении. Таким образом, чтение внутренних треков осуществляется с увеличенным, а наружных - с уменьшенным числом оборотов. Именно этим обусловливается более низкая скорость доступа к данным для компакт-дисков по сравнению с винчестерами.

3.2 Носители DVD

Универсальный цифровой диск (digitalversatiledisc- DVD) - вид накопителя, который, в отличие от CD, с момента выхода на рынок был рассчитан на широкое применение как в аудио- видео-, так и в компьютерной индустрии. Диски DVD , имея тот же самый размер, что и стандартный CD(диаметр 120 мм, толщина 1,2 мм), обеспечивают до 17 Гбайт памяти со скоростью передачи выше, чем для CD-ROM, обладают временем доступа, подобным CD-ROM, и разделяются на четыре версии:

DVD-5 - односторонний однослойный диск, вместимостью 4,7 Гбайт;

DVD-9 - односторонний двухслойный диск на 8,5 Гбайт;

DVD-10 - двухсторонний однослойный диск 9,4 Гбайт;

DVD-18 - вместимость до 17 Гбайт на двухстороннем двухслойном диске.

DVD - ROM . Как и для самих дисков, существует мало различий между дисководами DVDи CD-ROM, поскольку единственная очевидность - эмблема DVDна передней панели. Основное различие состоит в том, что данные CD-ROMзаписаны близко к верхнему слою поверхности диска, а уровень данных для DVD- ближе к середине, чтобы диск мог быть двухсторонним. Поэтому блок оптического чтения привода DVD-ROMустроен более сложно, чем его аналог для CD-ROM, чтобы создавать возможность для чтения как одного, так и другого из этих типов носителей.

Одно из самых ранних решений заключалось в использовании пары поворотных линз: одной - для фокусировки луча на уровнях данных DVD, а другой - для чтения обычных компакт-дисков. Впоследствии появились более изощренные проекты, которые устраняют потребность в переключении линзы. Например, «двойная дискретная оптическая выборка», предложенная Sony, имеет отдельные лазеры, оптимизированные для CD(длина волны 780 нм) и DVD(650 нм). Устройства Panasonicпереключают лазерные лучи с помощью голографического оптического элемента, способного к фокусировке луча в двух различных дискретных точках.

Дисководы DVD-ROMвращают диск намного медленнее, чем их аналоги для CD-ROM. Однако, так как на DVDданные упакованы намного плотнее, его производительность существенно выше, чем у CD-ROMпри одинаковой скорости вращения. В то время как обычный аудиодиск CD-ROM(lxили однократный) имеет максимальную скорость передачи данных 150 Кбайт/с, диск DVD(1х) может передавать данные по 1250 Кбайт/с, что достигается только при восьмикратной (8х) скорости диска CD-ROM.

Не существует общепринятой терминологии для описания различных «поколений» дисководов DVD . Однако термин «второе поколение» (или DVDII) обычно относится к 2х скоростным дисководам, также способным к чтению носителей CD-R/CD-RW, а термин «третье поколение» (или DVDIII) обычно означает дисководы со скоростью 5х (или иногда 4,8х, или 6х), некоторые из которых способны к чтению носителей DVD-RAM.

Форматы записываемых дисков DVD

Существует несколько версий записываемых DVD:

DVD-Rобычный, или DVD-R;

DVD-RAM(перезаписываемый);

Записываемый DVD . DVD-R(или записываемый DVD) во многом концептуально схож с CD-R- это однократно записываемый носитель, который может содержать любой тип информации, обычно сохраняемой на DVDмассового производства - видео, аудио, рисунки, файлы данных, программы, мультимедиа и т. д. В зависимости от типа записываемой информации диски DVD-Rмогут использоваться фактически на любом совместимом устройстве воспроизведения DVD , включая дисководы DVD-ROMи проигрыватели DVD-видео. Так как формат DVDподдерживает двухсторонние диски, до 9,4 Гбайт может быть сохранено на двухстороннем диске DVD-R. Данные могут быть написаны на DVDсо скоростью 1х (11,08 Мбит/с, что приблизительно эквивалентно скорости 9х CD-ROM). После записи диски DVD-Rмогут читаться с теми же скоростями, что и массово тиражируемые диски, в зависимости от «х-фактора» (кратности скорости) используемого дисковода DVD-ROM.

DVD-R, подобно CD-R, использует постоянную линейную скорость (CLV), чтобы максимизировать плотность записи на дисковой поверхности. Это требует изменения числа оборотов в минуту (rpm), поскольку диаметр дорожки изменяется при продвижении от одного края диска к другому. Запись начинается на внутренней стороне и заканчивается на внешней. При скорости 1х частота вращения изменяется от 1623 до 632 об/мин для диска емкостью 3,95 Гбайт и от 1475 до 575 об/мин для 4,7 Гбайт в зависимости от позиции головки записи-воспроизведения на поверхности. Для диска в 3,95 Гбайт интервал (подача) дорожек, или расстояние от центра одного витка спиральной дорожки до прилегающей части дорожки, составляет 0,8 мкм (микрон), что вдвое меньше, чем для CD-R. На диске в 4,7 Гбайт используется еще меньшая подача дорожки - 0,74 мкм.

DVD - RAM . Перезаписываемый DVD-ROMили DVD-RAMиспользует технологию изменения фазового состояния, которая не является чисто оптической технологией CDи DVD, а комбинацией некоторых особенностей магнитооптических методов и ведет свое происхождение от оптических дисковых систем. Применяемый формат «поверхность-углубление» (landgroove) позволяет записывать сигналы как на углублениях, сформированных на диске, так и в промежутках между углублениями. Углубления и заголовки секторов формируются на поверхности диска в процессе его отливки.

В середине 1998 г. появилось первое поколение изделий для многократного использования DVD-RAMемкостью 2,6 Гбайт с обеих сторон диска. Однако эти ранние устройства несовместимы со стандартами более высокой вместимости, которые используют контрастный слой расширения и тепловой буферный слой, чтобы достигнуть более высокой плотности записи. Спецификация для версии 2.0 DVD-RAMвместимостью 4,7 Гбайт на одной стороне была выпущена в октябре 1999 г.

DVD - RW . Известный ранее как DVD-R/Wили DVD-ER, носитель DVD-RW(который стал доступен в конце 1999 г.) появляется в процессе эволюционного развития фирмой Pioneerсуществующих технологий CD-RW/DVD-R.

Диски DVD-RWиспользуют технологию изменения фазового состояния вещества для чтения, записи и стирания информации. Луч лазера длиной волны 650 нм нагревает слой чувствительного сплава, чтобы перевести его или в кристаллическое (отражающее) состояние или аморфное (темное, не отражающее) в зависимости от уровня температуры и последующей скорости охлаждения. Результирующее различие между записанными темными метками и стертыми отражающими распознается проигрывателем или дисководом и позволяет воспроизвести сохраненную информацию.

Носители DVD-RWиспользуют ту же физическую схему адресации, что и DVD-R. В процессе записи лазер дисковода следует за микроскопическим углублением, осуществляя запись данных в спиральной дорожке.

Одно из основных преимуществ третьего перезаписываемого формата DVD- DVD+RW- это то, что он обеспечивает лучшую совместимость, чем любой из его конкурентов.

DVD + RW . Спецификация DVD-RAMбыла компромиссом между двумя различными предложениями основных конкурентов - группировка Hitachi, MatsushitaElectricи Toshiba, с одной стороны, и союз Sony/Philips- с другой.

DVD+RWимеет много общего с конкурирующей технологией DVD-RW, поскольку использует носитель с изменением фазового состояния, и предполагает пользовательский опыт , полученный при использовании дисков CD-RW. В формате DVD+RWдиски могут быть записаны как в режиме постоянной линейной скорости (CLV) для последовательной видеозаписи, так и в формате постоянной угловой скорости (CAV) для прямого доступа.

DVD + R . Двухслойная система DVD+Rиспользует две тонкие органические пленки из окрашиваемого материала, разделенные прокладкой (заполнителем). Нагревание сосредоточенным лазерным лучом необратимо меняет физическую и химическую структуру каждого слоя так, что измененные участки получают оптические свойства, отличные от исходных. Это приводит к колебаниям отражающей способности при вращении диска и создает сигнал считывания такой же, как в штампованных дисках DVD-ROM.

Заключение

Таким образом, можно сделать следующие обобщающие выводы:

1. Магнитные накопители являются важнейшей средой хранения информации в ЭВМ и разделяются на накопители на магнитных лентах (НМЛ) и накопители на магнитных дисках (НМД).

2. Магнитные диски используются как запоминающие устройства, позволяющие хранить информацию долговременно, при отключенном питании.

3. Основные виды накопителей: накопители на гибких магнитных дисках (НГМД); накопители на жестких магнитных дисках (НЖМД); накопители на магнитной ленте (НМЛ); накопители CD-ROM, CD-RW, DVD.

4. Основные виды носителей: гибкие магнитные диски (Floppy Disk); жёсткие магнитные диски (Hard Disk); кассеты для стримеров и других НМЛ; диски CD-ROM, CD-R, CD-RW, DVD.

5. Существует несколько версий записываемых DVD: DVD-Rобычный, или DVD-R; DVD-RAM(перезаписываемый); DVD-RW; DVD+RW.

Список литературы

1.Голицына О. Л., Попов И. И. Основы алгоритмизации и программирования: учеб. пособие. М.: ФОРУМ: ИНФРА-М, 2002.

2.Информационные технологии: учеб. пособие / О. Л. Голицына, Н. В. Максимов, Т. Л. Партыка, И. И. Попов. М.: ФОРУМ: ИНФРА-М, 2006.

3.Каймин В.А. Информатика: учебник. М.: ИНФРА-М, 2000.

4.Максимов Н. В., Партыка Т. Л., Попов И. И. Архитектура ЭВМ и вычислительных систем: учеб. пособие. М.: ФОРУМ: ИНФРА-М, 2004.

5.Максимов Н. В., Партыка Т. Л., Попов И. И. Технические средства информатизации: учеб. пособие. М.: ФОРУМ: ИНФРА-М, 2005.

6.Максимов Н. В., Попов И. И. Компьютерные сети : учеб. пособие. М.: ФОРУМ: ИНФРА-М, 2003.

7.Надточий А. И. Технические средства информатизации: учеб. пособие / Под общ. ред. К. И. Курбакова. М.: КОС-ИНФ; Рос. экон. акад., 2003.

8.Основы информатики (учебное пособие для абитуриентов экономических ВУЗов) / К. И. Курбаков, Т. Л. Партыка, И. И. Попов, В. П. Романов. М.: Экзамен, 2004.

9.Партыка Г. Л., Попов И. И. Вычислительная техника: учебное пособие. - М.: ФОРУМ: ИНФРА-М, 2007.

10.Смирнов Ю. П. История вычислительной техники: Становление и развитие: учеб. пособие. Изд-во Чуваш, ун-та, 2004.

Нам очень жаль, но запросы, поступившие с вашего IP-адреса, похожи на автоматические. По этой причине мы вынуждены временно заблокировать доступ к поиску.

Чтобы продолжить поиск, пожалуйста, введите символы с картинки в поле ввода и нажмите «Отправить».

В вашем браузере отключены файлы cookies . Яндекс не сможет запомнить вас и правильно идентифицировать в дальнейшем. Чтобы включить cookies, воспользуйтесь советами на странице нашей Помощи.

Накопители и носители информации.

Накопитель информации – устройство, осуществляющее чтение и/или запись информации.

Накопители информации бывают:

· внутренними и внешними:

· со съёмными и несъёмными носителями информации;

· стационарные и переносные.

Внутренние накопители находятся в системном блоке ПК и подключаются к специальным разъёмам на материнской плате.

Внешние и переносные накопители находится в собственном корпусе и подключается к компьютеру через стандартные порты ввода/вывода. Внешние накопители информации используются для резервного копирования и хранения информации, а также для транспортировки данных с одного компьютера на другой.

Носитель информации – это устройство, на котором непосредственно записана (хранится) информация, например, диск, кассета с магнитной лентой и т.д.

Накопитель и носитель информации могут быть выполнены в одном корпусе, т.е. составлять одно целое, например, жёсткий диск HDD (рис. 13).

Рис. 13. Накопитель на жёстком магнитном диске HDD

Накопитель может иметь съёмный носитель, например:

· у дисковода FDD съёмный носитель информации – дискета (Floppy -диск);

· у привода DVD - RW (рис. 14) съёмный носитель информации – DVD -диск.

Рис. 14. Дисковод DVD -RW

В некоторых случаях деление на накопитель и носитель условно. Например, внутренний накопитель информации оперативная память (RAM ) и переносной накопитель FLASH -карта являются одновременно и накопителем и носителем информации.

Основные накопители и носители информации

Накопитель

Русское обозначение

Международное обозначение

Вид накопителя

Носитель

Вид носителя

Оперативная память

внутренний

она же

Постоянная память

ROM BIOS

внутренний

она же

Жёсткий диск HDD

(накопитель на жёстком магнитном диске)

внутренний

жёсткий диск

несъёмный встроенный

Дисковод FDD

(накопитель на гибком магнитном диске)

внутренний

дискета (floppy- диск)

съёмный переносной

CD -ROM , CD -RW – дисковод для чтения и записи CD -дисков

CD -ROM

CD-RW

внутренний

CD -диск (компакт-диск)

съёмный переносной

DVD -RW – дисковод для чтения и записи CD и DVD -дисков

DVD-R
DVD-RW

внутренний

DVD -диск

съёмный переносной

FLASH- карта

FLASH

внешний, переносной

она же

Главной характеристикой носителя (накопителя) является его ёмкость, т.е. максимальный объём информации, который может быть записан на данное устройство. Ёмкость накопителя измеряется в следующих единицах:

обозначение

Международное обозначение

килобайт

мегабайт

гигабайт

В последнее время floppy -диски и CD -диски устарели, в ближайшее время перестанут использоваться и активно вытесняются более ёмкими носителями FLASH -картами (рис. 15) и DVD -дисками.

Рис. 15.. FLASH -карта

Ёмкость основных носителей (накопителей).

Носитель / накопитель

Примечание

Съёмные носители информации

Дискета или floppy- диск

1,44 Mb

выходят из употребления

CD- диск

650 Mb, 700 Mb

выходят из употребления

DVD- диск

4,7 Gb, 9 Gb

DVD -диски могут быть односторонними и двухсторонними, однослойными и двухслойными

FLASH- карта

256 Mb , 512 Mb ,

1 Gb , 2 Gb

Внутренние носители / накопители информации

Оперативная память RAM

512 Mb

1 Gb

стандарт для Windows XP

стандарт для Windows Vista

Жёсткий диск HDD

120 – 300 Gb

Типичная ёмкость ЖД современного ПК

1. Накопители на жестких магнитных дисках (НЖМД; harddisk – жесткий диск) представляют собой несколько дисков с магнитным покрытием, нанизанные на шпиндель, в герметичном металлическом корпусе. При вращении диска происходит быстрый доступ головки к любой части диска.

Магнитные носители основаны на свойстве материалов находиться в двух состояниях: «не намагничено»-«намагничено», кодирующие 0 и 1. По поверхности носителя перемещается головка, которая может считывать состояние или изменять его. Запись данных на магнитный носитель осуществляется следующим образом. При изменении силы тока, проходящего через головку , происходит изменение напряженности динамического магнитного поля на поверхности магнитного носителя, и состояние ячейки меняется с «не намагничено» на «намагничено» или наоборот. Операция считывания происходит в обратном порядке. Из-за контакта головки с поверхностью носителя через некоторое время носитель приходит в негодность.

В НЖМД может быть до десяти дисков . Их поверхность размечается дорожками (track). Каждая дорожка имеет свой номер. Дорожки с одинаковыми номерами, расположенные одна над другой на разных дисках образуют цилиндр. Дорожки на диске разбиты на секторы (нумерация начинается с единицы). Сектор занимает 571 байт. Из них 512 байт отведено для записи данных. Оставшиеся 59 байт отведены под заголовок (префикс), определяющий начало и номер сектора и окончание (суффикс), где записана контрольная сумма, необходимая для проверки целостности хранимых данных. Секторы и дорожки формируются во время форматирования диска . Разметка секторов зависит от типа диска. Жесткие диски устанавливаются в системном блоке и являются основным ВЗУ ЭВМ. Объем жестких дисков превышает 1 Тбайт (2011 г.), а время доступа – 0,005-0,03 с.

HDD (Hard Disc Drive) - классический жёсткий магнитный диск, наиболее распространённый на сегодняшний день тип накопителя. Достоинствами HDD являются невысокая цена и большая ёмкость (в современных ноутбуках может достигать 1 Тб и более). В то же время такие накопители создают шум при работе и чувствительны к сотрясениям (хотя во многих ноутбуках применяется система защиты жёсткого диска, обеспечивающая сохранность информации даже при довольно сильных ударах).

SSD (Solid-State Drive) - твердотельный накопитель, запоминающее устройство на основе энергонезависимых микросхем (технология flash). В отличии от HDD, такие накопители не содержат движущихся частей, благодаря чему они работают практически бесшумно, более надёжны и устойчивы к падениям и ударам. Кроме того, скорость доступа к данным на SSD-накопителях выше. Недостатками их являются относительно небольшая ёмкость, высокая цена и значительно меньшее количество циклов перезаписи, чем у HDD (впрочем, большинство современных SSD вполне способны прослужить несколько лет в довольно интенсивном режиме использования).

    • Обычная 2D NAND, выпускаемая по техпроцессам с 15/16-нм нормами, – это, похоже, предел миниатюризации ячеек энергонезависимой памяти с плавающим затвором, двигаться дальше которого не позволяют уже физические барьеры.
    • Первые массовые твердотельные накопители, построенные на флеш-памяти с трёхмерной компоновкой, появились на рынке более двух лет назад. Компания Samsung смогла запустить серийное производство трёхмерной флеш-памяти намного раньше своих конкурентов. Накопители Samsung 850 PRO и 850 EVO стали своего рода золотым стандартом для потребительских SATA SSD.

В 2016 году Компания Micron (США) уже готова предложить пользователям конечные продукты – твердотельные накопители, построенные на трёхмерной флеш-памяти собственного производства. Пока речь идёт лишь о единственном пробном продукте – SATA SSD-накопителе Crucial MX300, который до недавних пор ограниченно поставлялся только в одном варианте ёмкости 750 Гбайт.

SSD/HDD. Сочетание жёсткого диска с твердотельным модулем. Особенности каждого отдельного типа подробно описаны выше; а их сочетание применяется для оптимизации работы системы и взаимной компенсации недостатков. Так, твердотельный модуль, (имеющий в таких случаях намного меньшие объёмы, чем HDD), может применяться для хранения файлов операционной системы, а также некоторых наиболее важных программ, для которых важно быстродействие. В свою очередь для основного объёма данных (документов, мультимедиа, игр), где значение имеет не столько скорость доступа, сколько вместительность, применяется жёсткий диск. Ещё один способ работы такой связки - применение SSDв роли скоростного буфера для обмена данными между HDD и системой. И в том, и в другом случае быстродействие подобных ноутбуков во многих случаях оказывается вполне сравнимо с моделями на основе «чистых» SSD, притом что стоимость накопителя в пересчёте на гигабайт объёма получается намного меньшей.

SSHD (Solid-state hybrid drive). Гибридные накопители, сочетающие твердотельную память и жёсткий магнитный диск. От описанных выше связок HDD/SSD отличаются прежде всего тем, что в данном случае оба типа накопителей объединены в одном корпусе. Как правило, формат работы SSHD предусматривает хранение всех данных на магнитном диске и применение SSD в качестве буфера (кэша), ускоряющего скорость ввода/вывода данных. Таким образом, весь гибридный привод воспринимается системой как единое устройство, без разделения на SSDи HDD. Преимущества у SSHD фактически те же, что и у HDD/SSD - повышение скорости работы без значительного увеличения стоимости.

Флэш-память

Флэш-память представляет собой микросхемы памяти , заключенные в пластиковый корпус, и предназначена для долговременного хранения информации с возможностью многократной перезаписи. Микросхемы флэш-памяти не имеют движущихся частей. При работе указатели в микросхеме перемещаются на начальный адрес блока, и затем байты данных передаются в последовательном порядке. При производстве микросхем флэш-памяти используются логические элементы NAND (И-НЕ). Количество циклов перезаписи флэш-памяти превышает 1 млн. Флэш-память подключается к порту USB.

Компания Samsung выпустила новые потребительские твердотельные накопители модели 850 Pro. Они представлены в вариантах ёмкостью 128 ГБ, 256 ГБ, 512 ГБ и 1 ТБ. Однако главной особенностью модельного ряда стало применение пространственной 3D V-NAND флеш-памяти от Samsung.

Оптические носители

Оптические носители представляют собой компакт-диски диаметром 12 см (4,72 дюйма) или мини-диски диаметром 8 см (3,15 дюйма).

В центре компакт-диска находится круглое отверстие, надеваемое на шпиндель привода компакт-дисков.

Запись и считывание информации на компакт-диск осуществляется головкой, которая может испускать лазерный луч . Физический контакт между головкой и поверхностью диска отсутствует, что увеличивает срок службы компакт-диска.

виды компакт-дисков CD (Compact Disc), DVD (Digital Versatile Disc – цифровой универсальный (многосторонний) диск) и Blu-Ray, имеющие одинаковый размер 4,72 дюйма.

Объем CD равен 650 или 700 Мбайт . Музыкальные диски относятся к CD и предназначены только для чтения с них музыки. Время доступа к CD – 0,05-0,3 с.

Формат DVD являются развитием CD, их объем составляет 4,7 Гбайт за счет более плотной записи. DVD продолжают совершенствоваться. Существует несколько конкурирующих форматов DVD: DVD-, DVD+ и DVD-RAM.