Разделение сигналов. Частотное разделение связи Фазовое разделение сигналов




При передаче дискретных сообщений часто используется комбинационный способ формирования группового сигнала. Сущность этого способа состоит в следующем.

Пусть необходимо организовать передачу независимых дискретных сообщений по общему групповому каналу. Если каждый элемент сообщения может принимать одно из возможных состояний то общее число состояний системы из источников будет При одинаковых источниках следовательно,

Таким образом, используя основание кода можно передавать одновременно информацию от индивидуальных каналов работающих с основанием кода

Если, в частности, (элемент сообщения может принимать одно из двух возможных состояний, например «0» и а число каналов то оказываются возможными четыре разные комбинации элементарных сигналов «0» и «1» в обоих каналах.

Задача теперь сводится к передаче некоторых чисел, определяющих номер комбинации. Эти числа могут передаваться посредством любого кода. При такой передаче групповой сигнал является отображением определенной комбинации сигналов различных каналов. Разделение сигналов, основанное на различии в комбинациях сигналов разных каналов, называется комбинационным разделением.

Типичным примером комбинационного разделения является система двукратной частотной модуляции иногда называемой двукратным частотным телеграфированием Для передачи четырех комбинаций сигналов двух каналов используются четыре разные частоты: при двукратной фазовой манипуляции (ДФМ) каждой комбинации состояний I и II каналов соответствует определенное значение фазы группового сигнала или (табл. 8.2).

В качестве иллюстрации принципа комбинационного разделения рассмотрим пример разделения сигналов при двухканальной системе частотного телеграфирования (рис. 8.17). Здесь принятый сигнал разделяется фильтрами подключенными к детекторам попарно работающим на общие нагрузки.

При передаче частоты напряжение с выхода подводится

через диоды к входным зажимам аппаратов I и II каналов. При передаче частоты напряжение с фильтра подключается через диоды соответственно к зажимам и . Все остальные соединения на схеме рис. 8.17 выполнены в соответствии с табл. 8.2.

Таблица 8.2 (см. скан)

Рис. 3.17. Комбинационное разделение сигнала в системе ДЧМ

При оптимальном приеме для разделения сигналов на частотах используются не полосовые, а согласованные фильтры. Если частотные интервалы между и удовлетворяют условию ортогональности, то вероятность ошибки в одном из каналов ДЧМ при оптимальном некогерентном приеме определяется так:

Сравнение системы ДЧМ с обычной двухканальной ЧМ системой частотным разделением показывает, что обе системы занимают практически одинаковую полосу частот, однако мощность сигнала, требуемая для обеспечения заданной верности, при ДЧМ почти вдвое меньше, чем при частотном уплотнении. Существенно меньше оказывается и пиковая мощность при ДЧМ. Поэтому в системах с ограниченной энергетикой комбинационное разделение по методу ДЧМ находит широкое применение.

Комбинационные ДФМ системы на практике реализуются в виде двойной относительной фазовой модуляции ДОФМ по тем же причинам, по которым вместо абсолютных систем ФМ используются относительные - ОФМ. Аналогично можно строить системы комбинационного уплотнения для большего числа каналов - многократную частотную (МЧМ), многократную относительную фазовую модуляцию (МОФМ) и др.

В случае МЧМ, при выборе частот, обеспечивающих ортогональность системы передаваемых сигналов, занимаемая полоса частот ростом увеличивается также экспоненциально. Вероятность эшибки в каждом канале с увеличением также возрастает, но эчень медленно. Поэтому такие системы применяют в тех случаях, согда используемый канал связи обладает большими частотными ресурсами, но энергетические его возможности ограничены.

В случае МОФМ, наоборот, занимаемая полоса частот с ростом почти не расширяется, но вероятность ошибки увеличивается очень быстро и для сохранения требуемой верности необходимо увеличивать мощность сигнала. Такие системы пригодны в тех ситуациях, когда существуют жесткие ограничения полосы пропускания канала, а мощность сигнала практически не лимитирована.

Подробно многоканальные системы связи изучаются в специальных технических курсах.

Линия связи - наиболее дорогостоящий элемент системы свя­зи. Поэтому целесообразно по ней вести многоканальную передачу информации, так как с ростом числа каналов N увеличивается ее пропускная способность С. Поичем. должно выполняться условие:

Н К - производительность к-го канала.

Основная проблема многоканальной передачи - разделение ка­нальных сигналов на приемной стороне. Сформулируем условия этого разделения.

Пусть необходимо организовать одновременную передачу несколь­ких сообщений по общему (групповому) каналу, каждое из которых описывается выражением

(7.1.1)



С учетом формулы (7.1.1.) получаем:

Иначе говоря, приемник обладает избирательными свойствами по от­ношению к сигналу Sk(t).

Рассматривая вопрос разделения сигналов различают частотное, фазовое, вре­менное разделение каналов, а также разделение сигналов по форме и другим признакам.

Второй учебный вопрос

Частотное разделение каналов

Структурная схема многоканальной системы связи (МКС) с час­тотным разделением каналов (ЧРК) приведена на рис.7.1.1, где обо­значено: ИС - источник сигнала, Мi - модулятор, Фi - фильтр i-го канала, Σ - сумматор сигналов, ГН - генератор несущей, ПРД- пе­редатчик, ЛС - линия связи, ИП - источник помех, ПРМ - прием­ник, Д - детектор, ПС - получатель сообщения.


Рис.7.1.1. Структурная схема многоканальной системы связи

При ЧРК сигналы-переносчики имеют различные частоты fi (поднесущие) и разнесены на интервал, больший или равный ширине спектра модулированного канального сигнала. Поэтому модулирован­ные канальные сигналы занимают неперекрывающиеся полосы час­тот и являются ортогональными между собой. Последние суммируют­ся (уплотняются по частоте) в блоке Σ образуя групповой сигнал, которым модулируется колебание основной несущей частоты fн в блоке М.

Для модуляции канальных переносчиков можно применять все известные способы. Но более экономично полоса частот линии связи используется при однополосной модуляции (ОБП AM), так как в этом случае ширина спектра модулированного сигнала минимальна и равна ширине спектра передаваемого сообщения. Во второй ступени моду­ляции (групповым сигналом) чаще также используется ОБП AM в проводных каналах связи.

Такой сигнал с двойной модуляцией, после усиления в блоке ПРД передается по линии связи в приемник ПРМ, где подвергается обратному процессу преобразования, т. е. демодуля­ции сигнала по несущей в блоке Д для получения группового сигнала, выделения из него канальных сигналов полосовыми фильтрами Фi и демодуляции последних в блоках Дi. Центральные частоты полосовых фильтров Фi равны частотам канальных переносчиков, а их полосы прозрачности - ширине спектра модулированных сигналов. Откло­нение реальных характеристик полосовых фильтров от идеальных не должно влиять на качество разделения сигналов, поэтому используют защитные интервалы частот между каналами. Каждый из фильтров Ф приема должен пропускать без ослабления лишь те частоты, которые принадлежат сигналу данного канала. Частоты сигналов всех других каналов фильтр должен подавить.


Частотное разделение сигналов идеальными полосовыми фильтра­ми математически можно представить так:

где g k - импульсная реакция идеального полосового фильтра, пропускаю­щего без искажений полосу частот к-го канала.

Основные достоинства ЧРК : простота технической реализации, высокая помехоустойчивость, возможность организации любого числа каналов. Недостатки: неизбежное расширение используемой полосы частот при увеличении числа каналов, относительно низкая эффек­тивность использования полосы частот линии связи из-за потерь на расфильтровку; громоздкость и высокая стоимость аппаратуры, обу­словленные в основном большим числом фильтров (стоимость фильт­ров достигает 40 % стоимости системы с ЧРК). На железнодорожном транспорте разработана МКС с ЧРК типа К-24Т, в которой исполь­зуются малогабаритные электромеханические фильтры.

Третий учебный вопрос

Для разделения сигналов могут использоваться не только частота (ЧРК) и время (ВРК), но и форма сигналов. Разделение каналов по форме пока не нашло такого широкого использования, как частотное и временное. Его настоящее применение и перспективы в наибольшей степени связаны с множественным доступом в мобильных и спутниковых системах. В мобильной связи кодовое разделение рассматривается как один из основных видов обеспечения множественного доступа в плане реализации концепции развития систем мобильной связи IМТ-2000.

Технология разделения каналов по форме предполагает возможность одновременной работы группы разнообразных радиосредств (мобильные терминалы, отдельные радиостанции, земные станции спутниковой связи и т. д.) в общей полосе частот . Сигналы радиосредств образуют суммарный (групповой) сигнал , который поступает на приемные устройства пользователей. Взаимная ортогональность сигналов обеспечивает корреляционному приемнику выделение необходимого сигнала из .

Асинхронно-адресные системы связи

В ряде случаев осуществить точную синхронизацию затруднительно. С этим приходится сталкиваться, например, при организации оперативной связи между подвижными объектами (автомобилями, самолетами) или при организации оперативной связи с использованием искусственных спутников Земли в качестве ретрансляторов. В этих случаях могут быть использованы системы асинхронной многоканальной связи, когда сигналы всех абонентов передаются в общей полосе частот, а каналы не синхронизированы между собой во времени. В системах со свободным доступом каждому каналу (абоненту) присваивается определенная форма сигнала, которая и является отличительным признаком, "адресом" данного абонента, отсюда и название асинхронно адресные системы связи (ААСС).

Адрес абонента может кодироваться в виде псевдослучайных (шумоподобных) сигналов или в виде последовательности нескольких радиоимпульсов с одинаковым или различным частотным заполнением. Если радоимпульсы имеют различное частотное заполнение, то говорят, что адрес кодируется в виде частотно-временной матрицы (ЧВМ). Адреса различаются как интервалами времени между радиоимпульсами, так и частотами их заполнения.

Рассмотрим принцип работы ААСС на основе обобщенной структурной схемы (рис. 8.15).

Передаваемые сообщения, полученные от источников , подвергаются импульсной модуляции. В одних системах используется ФИМ, в других - некоторые разновидности дельта-модуляции. Затем каждый импульс, полученный в результате первичной импульсной модуляции, преобразуется в адресную последовательность из импульсов, разделенных паузами .

Формирование адресных последовательностей осуществляется с помощью линии задержки (ЛЗ), имеющую отводов, как показано на рис. 8.15.

Для формирования адреса используется только отводов из , причем для другого адреса применяется другое сочетание отводов. Эти импульсов различаются частотой своего заполнения (всего таких частот в системе уплотнения ) и могут занимать различных положений во времени. Для примера, на рис. 8.16 представлен вариант построения таких адресных последовательностей для системы с и .

Таким образом, импульс, полученный в результате первичной импульсной модуляции сообщением, разделяется в линии задержки на импульсов. Каждый из этих импульсов может занимать одно из положений во времени и передается на своей частоте.

Варьируя положения импульсов во времени относительно первого импульса, а также частоты заполнения импульсов, можно получить большое число адресных кодовых комбинаций (большую кратность уплотнения).

Каждый индивидуальный приемник представляет собой нелинейное устройство, содержащее линии задержки и схему совпадения (СС), и реагирует только на определенную последовательность радиоимпульсов (рис. 8.17). Приемник имеет полосовых фильтров , настроенных на соответствующие частоты. Выходные импульсы каждого фильтра детектируются и поступают на линии задержки, спроектированные в соответствии с присвоенным данному приемнику адресом так, чтобы все импульсов на выходах совпали по времени. На нелинейной схеме совпадений (СС) появляется импульс только при том условии, что задержанные входные импульсы во всех ветвях совпали. Если же с выходов линий задержек на вход схемы совпадения хотя бы один из импульсов поступает неодновременно с остальными, то сигнал на выходе СС не появится. Благодаря этому приемник реагирует лишь на присвоенную ему адресную кодовую комбинацию.

Описанный процесс разделения сообщений (т.е. выделения только присвоенной приемнику адресной кодовой комбинации) поясняет рис. 8.17. На вход приемника поступает групповой сигнал, содержащий, в частности, два сообщения (заштрихованные и незаштрихованные радиоимпульсы). Приемное устройство реагирует лишь на присвоенную ему адресную частотно-временную комбинацию, отображенную заштрихованными импульсами, т.е. выделяет сообщение. Импульсы с выхода схемы совпадения преобразуются в принятое сообщение в импульсном демодуляторе (ИД) в соответствии с примененной импульсной модуляцией.

Для того чтобы установить связь с определенным абонентом, достаточно выбрать соответствующие положений индивидуальной линии задержки на передатчике согласно адресной кодовой комбинации. Никаких частотных перестроек в этих системах не требуется, что очень удешевляет аппаратуру и обеспечивает ее надежность.

Функциональная схема простейшей системы многоканальной связи с разделением каналов по частоте представлена на рисунке 6.2.

Рисунок 6.2 – Функциональная схема системы многоканальной связи с частотным

разделением каналов

В зарубежных источниках для обозначения принципа частотного разделения каналов (ЧРК) используется термин Frequency Division Multiply Access (FDMA ).

Сначала в соответствии с передаваемыми сообщениями первичные (индивидуальные) сигналы, имеющие энергетические спектры G 1 (w ), G 2 (w ), ..., G N (w ) модулируют поднесущие частоты w K каждого канала. Эту операцию выполняют модуляторы М 1 , М 2 , ..., М N канальных передатчиков. Полученные на выходе частотных фильтров Ф 1 , Ф 2 , ..., Ф N спектры g K (w ) канальных сигналов занимают соответственно полосы частот Dw 1 , Dw 2 , ..., Dw N , которые в общем случае могут отличаться по ширине от спектров сообщений W 1 , W 2 , ..., W N .

Проследим основные этапы образования сигналов, а также изменение этих сигналов в процессе передачи (рисунок 6.9).

Спектры сигналов g 1 (w ), g 2 (w ),..., g N (w ) суммируются (S) и их совокупность g (w ) поступает на групповой модулятор (М ). Здесь спектр g (w ) с помощью колебания несущей частоты w 0 переносится в область частот, отведенную для передачи данной группы каналов, т.е. групповой сигнал s (t ) преобразуется в линейный сигнал s Л (t ). При этом может использоваться любой вид модуляции.

На приемном конце линейный сигнал поступает на групповой демодулятор (приемник П ), который преобразует спектр линейного сигнала в спектр группового сигнала g ¢ (w). Спектр группового сигнала затем с помощью частотных фильтров Ф 1 , Ф 2 ,...,Ф N вновь разделяется на отдельные полосы Dw K , соответствующие отдельным каналам. Наконец, канальные демодуляторы Д преобразуют спектры сигналов g K (w) в спектры сообщений G¢ K (w) , предназначенные получателям.

Рисунок 6.3 – Преобразование спектров в системе с частотным разделением каналов

Смысл частотного способа разделения каналов состоит в следующем: реальная линия связи обладает ограниченной полосой пропускания, и при многоканальной передаче каждому отдельному каналу отводится определенная часть общей полосы пропускания.

На приемной стороне одновременно действуют сигналы всех каналов, различающиеся положением их частотных спектров на шкале частот. Чтобы без взаимных помех разделить такие сигналы, приемные устройства должны содержать частотные фильтры. Каждый из фильтров Ф K должен пропустить без ослабления лишь те частоты wÎDw K , которые принадлежат сигналу данного канала; частоты сигналов всех других каналов фильтр должен подавить.

Для снижения переходных помех до допустимого уровня вводятся защитные частотные интервалы Dw ЗАЩ (рисунок 6.4).

Рисунок 6.4 – Спектр группового сигнала с защитными интервалами

В современных системах многоканальной телефонной связи каждому телефонному каналу выделяется полоса частот 4 кГц, хотя частотный спектр передаваемых звуковых сигналов ограничивается полосой от 300 до 3400 Гц, т.е. ширина спектра составляет 3,1 кГц. Между полосами частот соседних каналов предусмотрены интервалы шириной по 0,9 кГц, предназначенные для снижения уровня взаимных помех при расфильтровке сигналов. Это означает, что в многоканальных системах связи с частотным разделением сигналов эффективно используется лишь около 80% полосы пропускания линии связи.

Фазовое разделение сигналов

Фазовое разделение сигналов строится с использованием различия сигналов по фазе.

Пусть информация в N каналах передается изменением амплитуды непрерывных косинусоидальных сигналов с одинаковой несущей частотой щ 0 . Требуется разделить эти сигналы с использованием только различия в их начальных фазах.

Сигналы равны:

……………………………….

Как показывает анализ, различение сигналов возможно, если система содержит только два канала, по которым передаются косинусная и синусная составляющие:

а выделение первичных сигналов производится с использованием синхронного детектирования.

Разделение сигналов по форме

Кроме сигналов с неперекрывающимися спектрами и сигналов, неперекрывающихся по времени, существует класс сигналов, которые могут передаваться одновременно и иметь перекрывающиеся частотные спектры.

Разделение этих сигналов принято называть разделением по форме .

К числу таких сигналов относятся последовательности Уолша, Радемахера и разнообразные шумоподобные последовательности.

Последовательности Уолша и Радемахера строятся на базе кодового алфавита 1, -1, а любые пары этих последовательностей удовлетворяют условию

E i , i = j ,

0, i ? j ,

где - сигналы i - го и j - го каналов системы с временным разделением, T - интервал времени, в котором располагаются канальные сигналы, причем T= где F В - верхняя граничная частота спектра передаваемого сообщения.

Применение кодов Уолша и Радемахера связано с передачей по каналу специальных синхросигналов для поддержания определенных временных соотношений между принимаемыми и опорными кодовыми словами.

В случае использования шумоподобных последовательностей необходимости в передаче специальных синхросигналов нет, так как эту роль могут выполнять последовательности-переносчики информации.

Шумоподобные сигналы должны удовлетворять следующим условиям:

E, ф = 0,

0, -ф и > ф > -T ,

T > ф > ф и , (9.5)

0, i ? j , (9.6)

для - длительность шумоподобного сигнала; E - энергия сигнала; ф и - длительность единичного интервала шумоподобного сигнала.

При выполнении условий (9.5) обеспечивается работа системы синхронизации без передачи специального синхросигнала, так как автокорреляционная функция любого канального сигнала имеет ярко выраженный пик при ф = 0 и нулевые значения при сдвиге При выполнении условий (9.6) обеспечивается разделение канальных сигналов, так как взаимокорреляционная функция для любой пары сигналов равняется нулю.

К сожалению, скалярные произведения (9.5) для и (9.6) для реальных сигналов не равны нулю. Это приводит к снижению достоверности разделения сигналов.

Структурная схема многоканальной системы связи с разделением сигналов по форме приведена на рис.9.2.

Рис.9.2 Структурная схема многоканальной системы связи с разделением сигналов по форме: 1- генератор тактовых импульсов; 2- генератор шумоподобного сигнала; 3-АЦП; 4- перемножитель;; 5,6 - модуляторы; 7 - сумматор; 8 - передатчик; 9 - линия связи; 10 - приемник; 11 - согласованный фильтр; 12 - решающее устройство; 13 - ЦАП; 14,15 - демодуляторы

Передающая часть системы содержит N идентичных модуляторов, сумматор и передатчик. В модуляторах в качестве несущих колебаний используются шумоподобные сигналы, а в качестве модулирующих - сфазированные с этими сигналами двоичные кодовые последовательности с выхода АЦП. Период шумоподобных сигналов выбирается равным длительности единичного элемента кодового слова с выхода АЦП. В процессе модуляции символу «1» двоичного кодового слова (диаграмма а на рис.9.3) соответствует полный период шумоподобного сигнала (диаграмма б ), а символу «0» - отсутствие этого сигнала. Если F с - верхняя граничная частота спектра первичного сигнала, а L - число уровней квантования, то ширина спектра сигнала на выходе перемножителя (см. схему на рис. 9.2)

Где - длина (период) шумоподобной последовательности.

Как видно из формулы (9.7) ширина спектра каждого канального сигнала в раз больше ширины спектра ИКМ сигнала.

Рис.9.3. Временные диаграммы, поясняющие работу схемы, приведенной на рис.9.2

Отметим, что каждый канальный сигнал имеет свою форму, а временные процессы, протекающие в каналах, могут быть независимы. Групповой сигнал на выходе сумматора, равный сумме канальных сигналов, представляет собой случайный процесс, среднее значение и дисперсия которого зависит от загрузки отдельных каналов.

Приемная часть системы содержит приемник и N идентичных канальных приемников (демодуляторов). В структуру каждого демодулятора входит сргласованный фильтр, решающее устройство и ЦАП.

Каждый из согласованных фильтров откликается только на тот сигнал, с которым он согласован. Например, согласованный фильтр 11 первого канала откликается на сигнал, который формируется в первом модуляторе (рис.9.3, б ). Отклик фильтра показан на рис.9.3, в . Сигналы других каналов и их отклики на рис 9.3 для простоты не показаны. В решающем устройстве отклик согласованного фильтра 11 огибающая радиосигнала сравнивается с заданным пороговым уровнем U пор. Если происходит пересечение порога, то формируется оценка, передаваемого символа, равная 1, а если пересечения не происходит, то формируется оценка,равная нулевому символу.Кодовые слова с выхода решающего устройства 12 поступают на ЦАП 13 и преобразуются в сообщение a 1 * (t ).

Демодуляция сигнала происходит в присутствии помехи, которая состоит из двух составляющих. Первая является известной по предыдущим

главам суммой внутренней и внешней флуктуационных помех, а вторая - специфичной для систем с шумоподобными сигналами помехой. Эта помеха является суммой шумоподобных сигналовдругих каналов и называется структурной или взаимной помехой. Структурная помеха обусловлена тем, что системы используемых реальных сигналов являются «почти» ортогональными, т.е. для них не выполняется условие (9.6). Ее уровень определяется значениями взаимнокорреляционных функций между опорным канальным шумоподобным сигналом и присутствующими шумоподобными сигналами других каналов. С целью обеспечения заданного качества передаваемой информации, должны предусматриваться меры по уменьшению уровня этой структурной помехи. Рассмотренные принципы разделения сигналов по форме и построения многоканальной системы связи используется в многоканальных асинхронных адресных системах связи (ААСС) . В ААСС (рис.9.4) каждому абоненту присваивается один из «почти ортоганальных» шумоподобных сигналов, который является адресом канала.

Рис.9.4. Структурная схема многоканальной асинхронной адресной смстемы связи: 1,4,7,10 - абоненты 1,i,k,N; 2,5,8,11 - приемопередатчики; 3,6,9,12 - генераторы адресного сигнала; 13 - линия связи

Пусть, например, абоненту 1 нужно связаться с абонентом «k ». С этой целью набирается номер абонента «k » и таким образом вгенераторе адресного сигнала 1 устанавливается форма шумоподобного сигнала с номером «k ». Если число абонентов равно, то и число набираемых форм также равно

Шумоподобный сигнал с номером «k » посылается в линию связи и таким образом действует на входах приемников всех остальных абонентов. На шумоподобный сигнал «k » настроена приемная аппаратура только абонента «k », поэтому связь устанавливается между абонентами 1 и «k ». Приемники других абонентов на этот шумоподобный сигнал не откликаются. Ответная информация от абонента «k » передается с использованием шумоподобного сигнала с номером 1. Важной особенностью ААСС является отсутствие центральной коммутационной станции. Все абоненты имеют прямой доступ к друг другу, а если используется радиолиния, то частотная перестройка приемо-передатчиков для вхождения в связь не производится.

В заключение отметим, что в технической литературе имеется описание ААСС, в которых используется от 1000 до 1500 каналов с 50…100 активными абонентами.

Краткое описание CDMA

Примером внедрения технологии связи с шумоподобными сигналами является система с кодовым разделением каналов (CDMA - Code Division Multiple Access).

Замечательное свойство цифровой связи с шумоподобными сигналами- защищенность канала связи от перехвата, помех и подслушивания. Поэтому данная технология изначально разработана и использовалась для вооруженных сил США и лишь затем была передана для коммерческого использования.

Система CDMA фирмы Qualcom (стандарт IS-95) рассчитана на работу в диапазоне 800 МГц. Система CDMA построена по методу прямого расширения спектра частот на основе использования 64 видов последовательностей, сформированных по закону функций Уолша.

Каждому логическому каналу назначается свой код Уолша. Всего в одном физическом канале может быть 64 логических канала, так как последовательностей Уолша, которым в соответтвие ставятся логические каналы 64, каждая из которых имеет длину по 64 бита. При этом 9 каналов - служебные, а остальные 55 каналов используются для передачи данных.

При изменении знака бита информационного сообщения фаза используемой последовательности Уолша меняется на 180 градусов. Так как эти последовательности взаимно ортогональны, то взаимные помехи между каналами передачи одной базовой станции отсутствуют. Помехи по каналам передачи базовой станции создают лишь соседние базовые станции, которые работают в той же полосе частот и используют ту же самую ПСП, но с другим циклическим сдвигом.

В стандарте CDMA используется фазовая модуляция ФМ 4, ОФМ 4.