Таблица топология локальных сетей. Топология компьютерных сетей




Термин «топология» характеризует физическое расположение компьютеров, кабелей и других компонентов сети.

Топология – это стандартный термин, который используется профессионалами при описании основной компоновки сети.

Кроме термина «топология», для описания физической компоновки употребляют также следующее:

    Физическое расположение;

    Компоновка;

    Диаграмма;

Топология сети обуславливает ее характеристики. В частности выбор той или иной топологии влияет на:

    состав необходимого сетевого оборудования;

    характеристики сетевого оборудования;

    возможности расширения сети;

    способ управления сетью.

Чтобы совместно использовать ресурсы или выполнять другие сетевые задачи, компьютеры должны быть подключены друг к другу. Для этой цели в большинстве случаев используется кабель (реже – беспроводные сети – инфракрасное оборудование). Однако, просто подключить компьютер к кабелю, соединяющему другие компьютеры, недостаточно. Различные типы кабелей в сочетании с различными сетевыми платами, сетевыми операционными системами и другими компонентами требуют и различного взаиморасположения компьютеров.

Каждая топология сети налагает ряд условий. Например, она может диктовать не только тип кабеля, но и способ его прокладки.

Базовые топологии

  • звезда (star)

    кольцо (ring)

Если компьютеры подключены вдоль одного кабеля, топология называется шиной. В том случае, когда компьютеры подключены к сегментам кабеля, исходящим из одной точки, или концентратора, топология называется звездой. Если кабель, к которому подключены компьютеры, замкнут в кольцо, такая топология носит название кольца.

Шина.

Топологию «шина» часто называют «линейной шиной» (linerbus). Данная топология относится к наиболее простым и широко распространенным топологиям. В ней используется один кабель, именуемый магистралью или сегментом, вдоль которого подключены все компьютеры сети.

В сети с топологией «шина» компьютеры адресуют данные конкретному компьютеру, передавая их по кабелю в виде электрических сигналов.

Данные в виде электрических сигналов передаются всем компьютерам в сети; однако информацию принимает тот, адрес которого соответствует адресу получателя, зашифрованному в этих сигналах. Причем в каждый момент времени, только один компьютер может вести передачу.

Так, как данные в сеть передаются только одним компьютером, ее производительность зависит от количества компьютеров, подключенных к шине. Чем их больше, тем медленнее работает сеть. Шина – пассивная топология. Это значит, что компьютеры только «слушают» передаваемые по сети данных, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе остальных. В этой топологии данные распространяются по всей сети – от одного конца кабеля к другому. Если не предпринимать никаких действий, то сигналы, достигнув конца кабеля будут отражаться и это не позволит другим компьютерам осуществлять передачу. Поэтому, после того, как данные достигнут адресата, электрические сигналы необходимо погасить. Для этого на каждом конце кабеля в сети с топологией «шина» устанавливают терминаторы (terminators) (которые еще называют заглушками) для поглощения электрических сигналов.

Преимущества: отсутствие дополнительного активного оборудования (например повторителей) делает такие сети простыми и недорогими.

Схема линейной топологии локальной сети

Однако, недостаток линейной топологии заключается в ограничениях по размеру сети, ее функциональности и расширяемости.

Кольцо

При кольцеобразной топологии каждая рабочая станция соединяется с двумя ближайшими соседями. Такая взаимосвязь образует локальную сеть в виде петли или кольца. Данные передаются по кругу в одном направлении, а каждая станция играет роль повторителя, который принимает и отвечает на адресованные ему пакеты и передает другие пакеты следующей рабочей станции «вниз». В оригинальной кольцеобразной сети все объекты подключались друг к другу. Такое подключение должно было быть замкнутым. В отличии от пассивной топологии «шина», здесь каждый компьютер выступает в роли репитора, усиливая сигналы и передавая их следующему компьютеру. Преимущество такой топологии было предсказуемое время реагирования сети. Чем больше устройств находилось в кольце, тем дольше сеть реагировала на запросы. Наиболее существенный ее недостаток заключается в том, что при выходе из строя хотя бы одного устройства отказывалась функционировать вся сеть.

Один из принципов передачи данных по кольцу носит название передачи маркера. Суть его такова. Маркер последовательно, от одного компьютера к другому, передается до тех пор, пока его не получит тот, который хочет передать данные. Передающий компьютер изменяет маркер, помещает электронный адрес в данные и посылает их по кольцу.

Такую топологию можно улучшить, подключив все сетевые устройства через концентратор (Hub устройство, соединяющие другие устройства). Визуально «подправленное кольцо физически кольцом уже не является, но в подобной сети данные все равно передаются по кругу.

На рисунке сплошными линиями обозначены физические соединения, а пунктирными – направления передачи данных. Таким образом, подобная сеть имеет логическую кольцевидную топологию, тогда как физически представляет собой звезду.

Звезда

При топологии «звезда» все компьютеры с помощью сегментов кабеля подключаются к центральному компоненту, имеющему концентратор. Сигналы от передающего компьютера поступают через концентратор ко всем остальным. В сетях с топологией «звезда» подключение кабеля и управление конфигурацией сети централизованы. Но есть и недостаток: так как все компьютеры подключены к центральной точке, для больших сетей значительно увеличивается расход кабеля. К тому же если центральный компонент выйдет из строя, нарушится работа всей сети.

Преимущество: если нарушится работа в одном компьютере или выйдет из строя кабель, соединяющий один компьютер, то только этот компьютер не сможет получать и передавать сигналы. На остальные компьютеры в сети это не повлияет. Общая скорость работы сети ограничивается только пропускной способностью концентратора.

Звездообразная топология является доминирующей в современных локальных сетях. Такие сети довольно гибкие, легко расширяемые и относительно недорогие по сравнению с более сложными сетями, в которых строго фиксируются методы доступа устройств к сети. Таким образом, «звезды» вытеснили устаревшие и редко используемые линейные и кольцеобразные топологии. Более того, они стали переходным звеном к последнему виду топологии – коммутируемой звезд е.

Коммутатор – это многопортовое активное сетевое устройство. Коммутатор «запоминает» аппаратные (или MAC–MediaAccessControl) адреса подключенных к нему устройств и создает временные пути от отправителя к получателю, по которым и передаются данные. В обычной локальной сети с коммутироуемой топологией предусмотрено несколько соединений с коммутатором. Каждый порт и устройство, которое к нему подключено, имеет свою собственную пропускную способность (скорость передачи данных).

Коммутаторы могут значительно улучшить производительность сетей. Во-первых, они увеличивают общую пропускную способность, которая доступна для данной сети. Например в 8-ми потровом коммутаторе может быть 8 отдельных соединений, поддерживающих скорость до 10 Мбит/с каждое. Соответственно пропускная способность такого устройства – 80Мбит/с. Прежде всего коммутаторы увеличивают производительность сети, уменьшая количество устройств, которые могут заполнить всю пропускную способность одного сегмента. В одном таком сегменте содержится только два устройства: сетевое устройство рабочей станции и порт коммутатора. Таким образом за полосу пропускания в 10 Мбит/с могут «соперничать» всего два устройства, а не восемь (при сипользовании обыкновенного 8-портового концентратора, который не предусматривает такого разделения полосы пропускания на сегменты).

В заключении следует сказать что различают топологию физических связей (физическая структура сети) и топологию логических связей (логическую структуру сети)

Конфигурация физических связей определяется электрическими соединениями компьютеров и может быть представлена в виде графа, узлами которого являются компьютеры и коммуникационное оборудование, а ребра соответствуют отрезкам кабеля, связывающим пары узлов.

Логические связи представляют собой пути прохождения информационных потоков по сети, они образуются путем соответствующей настройки коммуникационного оборудования.

В некоторых случаях физическая и логическая топологии совпадают, а иногда не совпадают.

Сеть показанная на рисунке являет собой пример несовпадения физической и логической топологии. Физически компьютеры соединены по топологии общая шина. Доступ же к шине происходит не по алгоритму случайного доступа, а путем передачи токена (маркер) в кольцевом порядке: от компьютера А – компьютеру В, от компьютера В – компьютеру С и т.д. Здесь порядок передачи токена уже не повторяет физические связи, а определяется логическим конфигурированием сетевых адаптеров. Ничто не мешает настроить сетевые адаптеры и их драйверы так, чтобы компьютеры образовали кольцо в другом порядке, например В, А, С… При этом физическая структура не меняется.

Беспроводные сети.

Словосочетание «беспроводная среда» может ввести в заблуждение, поскольку означает полное отсутствие проводов в сети. В действительности же обычно беспроводные компоненты взаимодействуют с сетью, в которой – как среда передачи – используется кабель. Такая сеть со смешанными компонентами называется гибридной.

В зависимости от технологии беспроводные сети можно разделить на три типа:

    локальные вычислительные сети;

    расширенные локальные вычислительные сети;

    мобильные сети (переносные компьютеры).

Способы передачи:

    инфракрасное излучение;

  • радиопередача в узком спектре (одночастотнная передача);

    радиопередача в рассеянном спектре.

Кроме этих способов передачи и получения данных можно использовать мобильные сети, пакетное радио соединение, сотовые сети и микроволновые системы передачи данных.

В настоящее время офисная сеть – это не просто соединение компьютеров между собой. Современный офис сложно представить без баз данных в которых хранится как финансовая отчётность предприятия, так и информация по кадрам. В крупных сетях, как правило, в целях безопасности баз данных, и для увеличения скорости доступа к ним используются отдельные сервера для хранения баз данных. Также сейчас современный офис сложно представить без доступа в сеть Интернет. Вариант схемы беспроводной сети офиса изображён на рисунке

Итак сделаем вывод: будущую сеть необходимо тщательно спланировать. Для этого следует ответить на следующие вопросы:

    Для чего вам нужна сеть?

    Сколько пользователей будет в вашей сети?

    Как быстро сеть будет расширяться?

    Нужен ли для данной сети выход в Интернет?

    Необходимо ли централизованное управление пользователями сети?

После этого нарисуйте на бумаге приблизительную схему сети. Следует не забывать о стоимости сети.

Как мы с вами определили, топология является важнейшим фактором улучшения общей производительности сети. Базовые топологии могут применяться в любой комбинации. Важно понимать, что сильные и слабые стороны каждой топологии влияют на желаемую производительность сети и зависят от существующих технологий. Необходимо добиться равновесия между реальным расположением сети (например, в нескольких зданиях), возможностями использования кабеля, путями его прокладки и даже его типом.

На этой странице мы поговорим на такие темы, как: Коммуникационное оборудование , Топология сети и Компьютерная сеть и про все что с этим связано.
К Коммуникационному оборудованию относятся всевозможные аппаратные средства, необходимые для объединения узлов компьютерной сети , ее расширения и выполнения других функций. В компьютерных сетях с небольшим числом абонентов, где структура ограничивается базовой топологией сети, коммуникационное оборудование может отсутствовать.

Топология сети

Топология сети , это компоновка, структура, физическое расположение всех узлов компьютерной сети (рабочих станций, серверов, коммуникационного оборудования ) и способ соединения их линий связи. Топологию сети делят на:

  • Физическая — описывает реальное расположение и связи между узлами сети.
  • Логическая — управление обменом в сети, регулирование трафика, метод доступа.
  • Информационную — описывает направление потоков информации, передаваемых по сети.

Топология типа «Шина».

Топология типа шина , представляет собой общий кабель (называемый шина или магистраль), к которому подсоединены все рабочие станции. На концах кабеля находятся терминаторы, для предотвращения отражения сигнала.

Отправляемое рабочей станцией сообщение распространяется на все компьютеры сети. Каждая машина проверяет — кому адресовано сообщение и если ей, то обрабатывает его. Для того, чтобы исключить одновременную посылку данных, применяется либо «несущий» сигнал, либо один из компьютеров является главным и «даёт слово» остальным станциям.

При построении больших компьютерных сетей возникает проблема ограничения на длину связи между узлами, в таком случае сеть разбивают на сегменты. Сегменты соединяются различными устройствами — повторителями, концентраторами или хабами. Например, технология Ethernet позволяет использовать кабель длиной не более 185 метров.

Типичная шинная топология имеет простую структуру кабельной системы с короткими отрезками кабелей. Поэтому по сравнению с другими топологиями стоимость ее реализации невелика. Однако низкая стоимость реализации компенсируется высокой стоимостью управления. Фактически, самым большим недостатком шинной топологии является то, что диагностика ошибок и изолирование сетевых проблем могут быть довольно сложными, поскольку здесь имеются несколько точек концентрации. Так как среда передачи данных не проходит через узлы, подключенные к сети, потеря работоспособности одного из устройств никак не сказывается на других устройствах. Хотя использование всего лишь одного кабеля может рассматриваться как достоинство шинной топологии, однако оно компенсируется тем фактом, что кабель, используемый в этом типе топологии, может стать критической точкой отказа. Другими словами, если шина обрывается, то ни одно из подключенных к ней устройств не сможет передавать сигналы.

Топология типа «Кольцо».

Топология типа кольцо , базовая топология компьютерной сети , в которой рабочие станции подключены последовательно друг к другу, образуя замкнутую сеть.

В кольце, в отличие от других топологий (звезда, шина), не используется конкурентный метод посылки данных, компьютер в сети получает данные от стоящего предыдущим в списке адресатов и перенаправляет их далее, если они адресованы не ему. Список адресатов генерируется компьютером, являющимся генератором маркера. Сетевой модуль генерирует маркерный сигнал (обычно порядка 2-10 байт во избежание затухания) и передает его следующей системе (иногда по возрастанию MAC-адреса). Следующая система, приняв сигнал, не анализирует его, а просто передает дальше. Это так называемый нулевой цикл.

Последующий алгоритм работы таков — пакет данных GRE, передаваемый отправителем адресату начинает следовать по пути, проложенному маркером. Пакет передаётся до тех пор, пока не доберётся до получателя.

Достоинства топологии типа «Кольцо» :

  • Простота установки.
  • Практически полное отсутствие дополнительного оборудования.
  • Возможность устойчивой работы без существенного падения скорости передачи данных при интенсивной загрузке сети, поскольку использование маркера исключает возможность возникновения коллизий.

Недостатки топологии типа «Кольцо» :

  • Выход из строя одной рабочей станции, и другие неполадки (обрыв кабеля), отражаются на работоспособности всей сети.
  • Сложность конфигурирования и настройки.
  • Сложность поиска неисправностей.

Топология типа «Звезда».

Топология типа звезда , базовая топология компьютерной сети , в которой все компьютеры сети присоединены к центральному узлу (обычно сетевой концентратор), образуя физический сегмент сети. Подобный сегмент сети может функционировать как отдельно, так и в составе сложной сетевой топологии (как правило «дерево»).

Рабочая станция, с которой нужно послать данные, отсылает их на концентратор, а тот определяет адресата и отдаёт ему информацию. В определённый момент времени только одна машина в сети может пересылать данные, если на концентратор одновременно приходят два пакета, обе посылки оказываются не принятыми и отправителям нужно будет подождать случайный промежуток времени, чтобы возобновить передачу данных. Этот недостаток отсутствует на сетевом устройстве более высокого уровня — коммутаторе, который, в отличие от концентратора, подающего пакет на все порты, подает лишь на определенный порт получателю. Одновременно может быть передано несколько пакетов. Сколько зависит от коммутатора.

Достоинства топологии типа «Звезда» :

  • Выход из строя одной рабочей станции не отражается на работе всей сети в целом.
  • Хорошая масштабируемость сети.
  • Лёгкий поиск неисправностей и обрывов в сети.
  • Высокая производительность сети.
  • Гибкие возможности администрирования.

Недостатки топологии типа «Звезда» :

  • Выход из строя центрального концентратора обернётся неработоспособностью сети (или сегмента сети) в целом.
  • Для прокладки сети зачастую требуется больше кабеля, чем для большинства других топологий.
  • Конечное число рабочих станций в сети (или сегменте сети) ограничено количеством портов в центральном концентраторе.

Топология типа «Дерево».

Топология типа дерево , топология компьютерной сети, образуется в основном в виде комбинаций вышеназванных топологий компьютерных сетей . Основание «дерева» вычислительной сети располагается в точке (корень), в которой собираются коммуникационные линии информации (ветви дерева).

Вычислительные сети с древовидной структурой применяются там, где невозможно непосредственное применение базовых сетевых структур в чистом виде. Для подключения большого числа рабочих станций соответственно адаптерным платам применяют сетевые усилители и коммутаторы. Коммутатор, обладающий одновременно и функциями усилителя, называют активным концентратором.

Топологией сети называется физическую или электрическую конфигурацию кабельной системы и соединений сети.

В описании топологии сетей применяются несколько специализированных терминов: узел сети - компьютер, либо коммутирующее устройство сети; ветвь сети - путь, соединяющий два смежных узла; оконечный узел - узел, расположенный в конце только одной ветви; промежуточный узел - узел, расположенный на концах более чем одной ветви; смежные узлы - узлы, соединенные, по крайней мере, одним путём, не содержащим никаких других узлов.

Существует всего 5 основных типов топологии сетей:

1. Топология “Общая Шина”. В этом случае подключение и обмен данными производится через общий канал связи, называемый общей шиной: Общая шина является очень распространенной топологией для локальных сетей. Передаваемая информация может распространяться в обе стороны. Применение общей шины снижает стоимость проводки и унифицирует подключение различных модулей. Основными преимуществами такой схемы являются дешевизна и простота разводки кабеля по помещениям. Самый серьезный недостаток общей шины заключается в ее низкой надежности: любой дефект кабеля или какого-нибудь из многочисленных разъемов полностью парализует всю сеть. Другим недостатком общей шины является ее невысокая производительность, так как при таком способе подключения в каждый момент времени только один компьютер может передавать данные в сеть. Поэтому пропускная способность канала связи всегда делится здесь между всеми узлами сети.

2. Топология “Звезда”. В этом случае каждый компьютер подключается отдельным кабелем к общему устройству, называемому концентратором, который находится в центре сети:

В функции концентратора входит направление передаваемой компьютером информации одному или всем остальным компьютерам сети. Главное преимущество этой топологии перед общей шиной - большая надежность. Любые неприятности с кабелем касаются лишь того компьютера, к которому этот кабель присоединен, и только неисправность концентратора может вывести из строя всю сеть. Кроме того, концентратор может играть роль интеллектуального фильтра информации, поступающей от узлов в сеть, и при необходимости блокировать запрещенные администратором передачи. К недостаткам топологии типа звезда относится более высокая стоимость сетевого оборудования из-за необходимости приобретения концентратора. Кроме того, возможности по наращиванию количества узлов в сети ограничиваются количеством портов концентратора. В настоящее время иерархическая звезда является самым распространенным типом топологии связей как в локальных, так и глобальных сетях.

3. Топология “Кольцо”. В сетях с кольцевой топологией данные в сети передаются последовательно от одной станции к другой по кольцу, как правило, в одном направлении:

Если компьютер распознает данные как предназначенные ему, то он копирует их себе во внутренний буфер. В сети с кольцевой топологией необходимо принимать специальные меры, чтобы в случае выхода из строя или отключения какой-либо станции не прервался канал связи между остальными станциями. Преимущество данной топологии - простота управления, недостаток - возможность отказа всей сети при сбое в канале между двумя узлами.

4. Ячеистая топология. Для ячеистой топологии характерна схема соединения компьютеров, при которой физические линии связи установлены со всеми рядом стоящими компьютерами:

В сети с ячеистой топологией непосредственно связываются только те компьютеры, между которыми происходит интенсивный обмен данными, а для обмена данными между компьютерами, не соединенными прямыми связями, используются транзитные передачи через промежуточные узлы. Ячеистая топология допускает соединение большого количества компьютеров и характерна, как правило, для глобальных сетей. Достоинства данной топологии в ее устойчивости к отказам и перегрузкам, т.к. имеется несколько способов обойти отдельные узлы.

5. Смешанная топология. В то время как небольшие сети, как правило, имеют типовую топологию - звезда, кольцо или общая шина, для крупных сетей характерно наличие произвольных связей между компьютерами. В таких сетях можно выделить отдельные произвольно подсети, имеющие типовую топологию, поэтому их называют сетями со смешанной топологией.

Сетевая топология (от греч. τόπος , - место) - способ описания конфигурации сети, схема расположения и соединения сетевых устройств.
(ВикиредиЯ )

Топология
– это схема соединения каналами связи компьютеров или узлов сети между собой .
Сетевая топология может быть

  • физической - описывает реальное расположение и связи между узлами сети.
  • логической - описывает хождение сигнала в рамках физической топологии.
  • информационной - описывает направление потоков информации, передаваемых по сети.
  • управления обменом - это принцип передачи права на пользование сетью.

Существует множество способов соединения сетевых устройств. Выделяют следующие топологии:

  • полносвязная
  • ячеистая
  • общая шина
  • звезда
  • кольцо
  • снежинка

Рассмотрим каждую из них по подробнее.

1) Полносвязная топология - топология компьютерной сети, в которой каждая рабочая станция подключена ко всем остальным. Этот вариант является громоздким и неэффективным, несмотря на свою логическую простоту. Для каждой пары должна быть выделена независимая линия, каждый компьютер должен иметь столько коммуникационных портов сколько компьютеров в сети. По этим причинам сеть

может иметь только сравнительно небольшие конечные размеры. Чаще всего эта топология используется в многомашинных комплексах или глобальных сетях при малом количестве рабочих станций.

Технология доступа в сетях этой топологии реализуется методом передачи маркера. Маркер – это пакет, снабженный специальной последовательностью бит (его можно сравнить с конвертом для письма). Он последовательно предается по кольцу от компьютера к компьютеру в одном направлении. Каждый узел ретранслирует передаваемый маркер. Компьютер может передать свои данные, если он получил пустой маркер. Маркер с пакетом передается, пока не обнаружится компьютер, которому предназначен пакет. В этом компьютере данные принимаются, но маркер движется дальше и возвращается к отправителю.
После того, как отправивший пакет компьютер убедится, что пакет доставлен адресату, маркер освобождается.

Недостаток: г ромоздкий и неэффективный вариант , т . к . каждый компьютер должен иметь большое кол - во коммуникационных портов .


2) Ячеистая топология - базовая полносвязная топология компьютерной сети, в которой каждая рабочая станция сети соединяется с несколькими другими рабочими станциями этой же сети. Характеризуется высокой отказоустойчивостью, сложностью настройки и переизбыточным расходом кабеля. Каждый компьютер имеет множество возможных путей соединения с другими компьютерами. Обрыв кабеля не приведёт к потере соединения между двумя компьютерами.

Получается из полносвязной путем удаления некоторых возможных связей. Эта топология допускает соединение большого количества компьютеров и характерна, как правило, для крупных сетей.

3) Общая шина, представляет собой общий кабель (называемый шина или магистраль), к которому подсоединены все рабочие станции. На концах кабеля находятся терминаторы, для предотвращения отражения сигнала.

Достоинства:

Недостатки:

  • Неполадки в сети, такие как обрыв кабеля и выход из строя терминатора, полностью блокируют работу всей сети;
  • Сложная локализация неисправностей;
  • С добавлением новых рабочих станций падает производительность сети.

Шинная топология представляет собой топологию, в которой все устройства локальной сети подключаются к линейной сетевой среде передачи данных. Такую линейную среду часто называют каналом, шиной или трассой. Каждое устройство, например, рабочая станция или сервер, независимо подключается к общему шинному кабелю с помощью специального разъема. Шинный кабель должен иметь на конце согласующий резистор, или терминатор, который поглощает электрический сигнал, не давая ему отражаться и двигаться в обратном направлении по шине.

4) Звезда - базовая топология компьютерной сети, в которой все компьютеры сети присоединены к центральному узлу (обычно коммутатор), образуя физический сегмент сети. Подобный сегмент сети может функционировать как отдельно, так и в составе сложной сетевой топологии (как правило, «дерево»). Весь обмен информацией идет исключительно через центральный компьютер, на который таким способом возлагается очень большая нагрузка, поэтому ничем другим, кроме сети, он заниматься не может. Как правило, именно центральный компьютер является самым мощным, и именно на него возлагаются все функции по управлению обменом. Никакие конфликты в сети с топологией звезда в принципе невозможны, потому что управление полностью централизовано.

Метод доступа реализуется с помощью технологии Arcnet. Этот метод доступа также использует маркер для передачи данных . Маркер передается от компьютера к компьютеру в порядке возрастания адреса . Как и в кольцевой топологии , каждый компьютер регенерирует маркер .

Сравнение с другими топологиями.

Достоинства:

  • выход из строя одной рабочей станции не отражается на работе всей сети в целом;
  • хорошая масштабируемость сети;
  • лёгкий поиск неисправностей и обрывов в сети;
  • высокая производительность сети (при условии правильного проектирования);
  • гибкие возможности администрирования.

Недостатки:

  • выход из строя центрального концентратора обернётся неработоспособностью сети (или сегмента сети) в целом;
  • для прокладки сети зачастую требуется больше кабеля, чем для большинства других топологий;
  • конечное число рабочих станций в сети (или сегменте сети) ограничено количеством портов в центральном концентраторе.

5) Кольцо - это топология, в которой каждый компьютер соединен линиями связи только с двумя другими: от одного он только получает информацию, а другому только передает. На каждой линии связи, как и в случае звезды, работает только один передатчик и один приемник. Это позволяет отказаться от применения внешних терминаторов.

Работа в сети кольца заключается в том, что каждый компьютер ретранслирует (возобновляет) сигнал, то есть выступает в роли повторителя, потому затухание сигнала во всем кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца. Четко выделенного центра в этом случае нет, все компьютеры могут быть одинаковыми. Однако достаточно часто в кольце выделяется специальный абонент, который управляет обменом или контролирует обмен. Понятно, что наличие такого управляющего абонента снижает надежность сети, потому что выход его из строя сразу же парализует весь обмен.

Компьютеры в кольце не являются полностью равноправными (в отличие, например, от шинной топологии). Одни из них обязательно получают информацию от компьютера, который ведет передачу в этот момент, раньше, а другие - позже. Именно на этой особенности топологии и строятся методы управления обменом по сети, специально рассчитанные на «кольцо». В этих методах право на следующую передачу (или, как еще говорят, на захват сети) переходит последовательно к следующему по кругу компьютеру.

Подключение новых абонентов в «кольцо» обычно совсем безболезненно, хотя и требует обязательной остановки работы всей сети на время подключения. Как и в случае топологии «шина», максимальное количество абонентов в кольце может быть достаточно большое (1000 и больше). Кольцевая топология обычно является самой стойкой к перегрузкам, она обеспечивает уверенную работу с самыми большими потоками переданной по сети информации, потому что в ней, как правило, нет конфликтов (в отличие от шины), а также отсутствует центральный абонент (в отличие от звезды).

В кольце, в отличие от других топологий (звезда, шина), не используется конкурентный метод посылки данных, компьютер в сети получает данные от стоящего предыдущим в списке адресатов и перенаправляет их далее, если они адресованы не ему. Список адресатов генерируется компьютером, являющимся генератором маркера. Сетевой модуль генерирует маркерный сигнал (обычно порядка 2-10 байт во избежание затухания) и передает его следующей системе (иногда по возрастанию MAC-адреса). Следующая система, приняв сигнал, не анализирует его, а просто передает дальше. Это так называемый нулевой цикл.

Последующий алгоритм работы таков - пакет данных GRE, передаваемый отправителем адресату начинает следовать по пути, проложенному маркером. Пакет передаётся до тех пор, пока не доберётся до получателя.

Сравнение с другими топологиями.

Достоинства:

  • Простота установки;
  • Практически полное отсутствие дополнительного оборудования;
  • Возможность устойчивой работы без существенного падения скорости передачи данных при интенсивной загрузке сети, поскольку использование маркера исключает возможность возникновения коллизий.

Недостатки:

  • Выход из строя одной рабочей станции, и другие неполадки (обрыв кабеля), отражаются на работоспособности всей сети;
  • Сложность конфигурирования и настройки;
  • Сложность поиска неисправностей.
  • Необходимость иметь две сетевые платы, на каждой рабочей станции.

6) С нежинка ( Иерархическая Звезда или древовидная топология) - топология типа звезды , но используется несколько концентратов , иерархически соединенных между собой связями типа звезда . Топология "снежинка" требует меньшей длины кабеля, чем "звезда", но больше элементов.

Самый распространенный способ связей как в локальных сетях , и сайт lyceum1.perm.ru

Термин "сетевая топология" описывает возможные конфигурации компьютерных сетей. Специфика сетевых технологий состоит в необходимости строгого согласования всех характеристик аппаратных и программных сетевых средств для успешного обмена данными. При этом существующие аппаратные средства способны обеспечивать различные возможности (скорость, надежность и т. п.) по передаче данных в зависимости от способа использования этих устройств. Для учета всех этих особенностей режимов работы оборудования и было введено понятие "сетевая топология". В настоящее время для описания конфигурации сети используют два вида топологий: физическую и логическую.

Физические топологии

Физическая топология описывает реально использующиеся способы организации физических соединений различного сетевого оборудования (использующиеся кабели, разъемы и способы подключения сетевого оборудования). Физические топологии различаются по стоимости и функциональности. Ниже мы приведем описание трех наиболее часто использующихся физических топологий с указанием их преимуществ и недостатков.

Физическая шина (Physical Bus)

Самая простая форма топологии физической шины представляет собой один основной кабель, оконцованный с обеих сторон специальными типами разъемов – терминаторами. При создании такой сети основной кабель прокладывают последовательно от одного сетевого устройства к другому. Сами устройства подключаются к основному кабелю с использованием подводящих кабелей и T-образных разъемов. Пример такой топологии приведен на рисунке.

Более сложной формой топологии физической шины является "распределенная шина" (чаще называется "древовидная топология"). В такой топологии основной кабель, начинаясь из одной точки, называемой "корнем" (root), разветвляется в различных направлениях определяемых реальным физическим местоположением сетевых устройств. В отличие от описанной выше топологии, в топологии "распределенная шина" основной кабель имеет более двух окончаний. Разветвление кабеля осуществляется с использованием специальных разъемов. Пример такой топологии приведен на рисунке.

Физическая звезда (Physical Star)

Самая простая форма топологии "физическая звезда" состоит из множества кабелей (по одному на каждое подключаемое сетевое устройство) подключенных к одному, центральному устройству. Это центральное устройство называют концентратором. Примером топологии физической звезды является технология Ethernet 10Base-T или Ethernet 100Base-T. В таких сетях каждое сетевое устройство подключается к концентратору с использованием кабеля типа "витая пара".

В случае использования простой топологии "физическая звезда" реальные пути движения сигналов могут не соответствовать форме звезды. Единственная характеристика, описываемая топологией "физическая звезда" – это способ физического соединения сетевых устройств. Пример самой простой топологии "физическая звезда" приведен на рисунке.

В топологии "распределенная звезда" способы соединения устройств могут быть существенно сложнее. В такой топологии центральные устройства (концентраторы) дополнительно соединяются между собой.

Физическое кольцо с подключением типа "звезда" (Physical Star-Wired Ring)

В этой топологии все сетевые устройства подключаются к центральному концентратору так же, как это происходит при использовании топологии "физическая звезда". Но каждый из концентраторов внутри себя организовывает физические соединения, обеспечивающие построение единого физического кольца. При использовании нескольких концентраторов, кольцо в каждом из концентраторов размыкается, а сами концентраторы подключаются друг к другу с использованием двух кабелей, организуя физическое замыкание кольца.

Топология физического кольца используется в сетях IBM Token-Ring. Пример описанной топологии приведен на рис.

В этой топологии все концентраторы являются "интеллектуальными" устройствами. При возникновении разрыва физического кольца в любой точке сети концентратор автоматически обнаруживает разрыв и восстанавливает кольцо путем замыкания внутри себя соответствующих портов. На рисунке показан пример такого восстановления кольца (концентратор А).

В настоящее время наибольшей популярностью пользуется звездообразная топология, поскольку она обеспечивает самый простой способ подключения новых устройств в сеть. В большинстве случаев включение нового устройства в сеть заключается лишь в прокладке отрезка кабеля, соединяющего подключаемое сетевое устройство с концентратором.

Логические топологии

Логическая топология определяет реальные пути движения сигналов при передаче данных по используемой физической топологии. Таким образом, логическая топология описывает пути передачи потоков данных между сетевыми устройствами. Она определяет правила передачи данных в существующей среде передачи с гарантированием отсутствия помех влияющих на корректность передачи данных.

Поскольку логическая топология описывает путь и направление передачи данных, то она тесно связана с уровнем MAC (Media Access Control) модели OSI (подуровень канального уровня). Для каждой из существующих логических топологий существуют методы контроля доступа к среде передачи данных (MAC) позволяющие осуществлять мониторинг и контроль процесса передачи данных. Эти методы будут обсуждаться вместе с соответствующей им топологией.

В настоящее время существует три базовые логические топологии: "логическая шина", "логическое кольцо" и "логическая звезда" (коммутация). Каждая из этих топологий обеспечивает преимущества в зависимости от способов использования. Используя рассмотренные ранее рисунки, посвященные физическим топологиям, всегда помните, что логическая топология определяет направление и способ передачи, а не схему соединения физических проводников и устройств.

Логическая шина

В топологии "логическая шина" последовательности данных, называемые "кадрами" (frames), в виде сигналов распространяются одновременно во всех направлениях по существующей среде передачи. Каждая станция в сети проверяет каждый кадр данных для определения того, кому адресованы эти данные. Когда сигнал достигает конца среды передачи, он автоматически гасится (удаляется из среды передачи) соответствующими устройствами, называемыми "терминаторами" (terminators). Такое уничтожение сигнала на концах среды передачи данных предотвращает отражение сигнала и его обратное поступление в среду передачи. Если бы терминаторов не существовало, то отраженный сигнал накладывался бы на полезный и искажал его.

В топологии "логическая шина" среда передачи совместно и одновременно используется всеми устройствами передачи данных. Для предотвращения помех при попытках одновременной передачи данных несколькими станциями, только одна станция в любой момент времени имеет право передавать данные. Таким образом, должен существовать метод определения того, какая станция имеет право передавать данные в каждый конкретный момент времени. В соответствии с этими требованиями были созданы методы контроля доступа к среде передачи, которые мы обзорно рассмотрели в разделе "Процесс обмена данными".

Наиболее часто используемым при организации топологии логической шины методом контроля доступа к среде передачи является CSMA/CD – “метод прослушивания несущей, с организацией множественного доступа и обнаружением коллизий” (Carrier Sense Multiple Access/ Collision Detection). Этот метод доступа очень похож на разговор нескольких людей в одной комнате. Для того, чтобы не мешать друг другу, в любой момент времени говорит только один человек, а все остальные слушают. А начинать говорить кто-либо может только, убедившись в том, что в комнате воцарилось молчание. Точно таким же образом работает и сеть. Когда какая-либо станция собирается передавать данные, сначала она "прослушивает" (carrier sense) среду передачи данных в целях обнаружения какой-либо уже передающей данные станции. Если какая-либо станция в данный момент выполняет передачу, то станция ждет окончания процесса передачи. Когда среда передачи освобождается, ожидавшая станция начинает передачу своих данных. Если в этот момент начинается передача еще одной или несколькими станциями тоже ожидавшими освобождения среды передачи, то возникает "коллизия" (collision). Все передающие станции обнаруживают коллизию и посылают специальный сигнал информирующий все станции сети о возникновении коллизии. После этого все станции замолкают на случайный промежуток времени перед повторной попыткой передачи данных. После этого алгоритм работы начинается сначала.

Сеть, базирующаяся на топологии логической шины, может также использовать и технологию "передачи маркера" (token passing) для контроля доступа к среде передачи данных. При использовании этого метода контроля каждой станции назначается порядковый номер указывающий очередность в передаче данных. После передачи данных станцией с максимальным номером, очередь возвращается к первой станции. Порядковые номера, назначаемые станциям, могут не соответствовать реальной последовательности физического подключения станций к среде передачи данных. Для контроля того, какая станция в текущий момент времени имеет право передать данные, используется контрольный кадр данных, называемый "маркером доступа". Этот маркер передается от станции к станции в последовательности, соответствующей их порядковым номерам. Станция, получившая маркер, имеет право передать свои данные. Однако, каждая передающая станция ограничена временем, в течение которого ей разрешается передавать данные. По окончании этого времени станция обязана передать маркер следующей станции.

Работа такой сети начинается с того, что первая станция, имеющая маркер доступа, передает свои данные и получает на них ответы в течение ограниченного промежутка времени (time slot). Если станция завершает обмен данными ранее окончания выделенного ей времени, она просто передает маркер станции со следующим порядковым номером. Далее процесс повторяется. Такой последовательный процесс передачи маркера продолжается непрерывно, предоставляя возможность каждой станции через строго определенный промежуток времени получить возможность передать данные.

Топология "логической шины" базируется на использовании топологий "физическая шина" и "физическая звезда". Метод контроля доступа и типы физических топологий выбираются в зависимости от требований к проектируемой сети. Например, каждая из сетей: Ethernet, 10Base-T Ethernet и ARCnet® используют топологию "логическая шина". Кабели в сетях Ethernet (тонкий коаксиальный кабель) подключаются с использованием топологии "физическая шина", а сети 10Base-T Ethernet и ARCnet базируются на топологии "физическая звезда". Вместе с тем, сети Ethernet (физическая шина) и 10Base-T Ethernet (физическая звезда) используют CSMA/CD в качестве метода контроля доступа к среде передачи данных, а в ARCnet (физическая звезда) применяется маркер доступа.

На первом рисунке показана сеть Ethernet (физическая шина, логическая шина), а на втором – проиллюстрирована сеть 10Base-T Ethernet (физическая звезда, логическая шина). На обоих рисунках обратите внимание на то, что сигнал (показан стрелками) исходит от одной (передающей в данный момент) станции и распространяется во всех направлениях существующей среды передачи.

Логическое кольцо

В топологии "логическое кольцо" кадры данных передаются по физическому кольцу до тех пор, пока не пройдут через всю среду передачи данных. Топология "логическое кольцо" базируется на топологии "физическое кольцо с подключением типа "звезда"". Каждая станция, подключенная к физическому кольцу, получает данные от предыдущей станции и повторяет этот же сигнал для следующей станции. Таким образом, данные, повторяясь, следуют от одной станции к другой до тех пор, пока не достигнут станции, которой они были адресованы. Получающая станция, копирует данные из среды передачи и добавляет к кадру атрибут, указывающий на успешное получение данных. Далее кадр с установленным "атрибутом доставки" продолжает путешествие по кольцу до тех пор, пока не достигнет станции, изначально отправившей эти данные. Станция, проанализировав "атрибут доставки" и убедившись в успешности передачи данных, удаляет свой кадр из сети. Рисунок демонстрирует процесс передачи данных в виде "логического кольца" в сети, базирующейся на топологии "физическое кольцо с подключением типа "звезда"".

Метод контроля доступа к среде передачи в таких сетях всегда базируется на технологии "маркеров доступа". Однако последовательность получения права на передачу данных (путь следования маркера), не всегда может соответствовать реальной последовательности подключения станций к физическому кольцу. IBM"s Token-Ring является примером сети, использующей топологию "логического кольца", базирующегося на "физическом кольце с подключением типа "звезда"".

Логическая звезда (коммутация)

В топологии "логическая звезда" используется метод коммутации, обеспечивающий ограничение распространения сигнала в среде передачи в пределах некоторой ее части. Механизм такого ограничения является основополагающим в топологии "логическая звезда".

В чистом виде, коммутация предоставляет выделенную линию передачи данных каждой станции. Когда одна станция передает сигнал другой станции подключенной к тому же самому коммутатору, то коммутатор передает сигнал только по среде передачи данных, соединяющей эти две станции. Рисунок показывает способ передачи данных между двумя станциями, подключенными к одному и тому же коммутатору. При таком подходе возможна одновременная передача данных между несколькими парами машин, так как данные, передающиеся между любыми двумя станциями, остаются "невидимыми" для других пар станций.

Большинство технологий коммутации создаются на базе существующих сетевых стандартов, привнося в них новый уровень функциональности. Например, рассмотренный ранее стандарт сети 10Base-T (метод контроля CSMA/CD), позволяет применять коммутацию.

Некоторые коммутаторы разрабатываются для поддержки возможностей одновременного использования нескольких сетевых стандартов. Например, один коммутатор может иметь порты для подключения станций как по стандарту 10Base-T Ethernet, так и FDDI (Fiber Distributed Data Interface).

Коммутаторы имеют встроенную логику, позволяющую им интеллектуально управлять процессом передачи данных между машинами. Внутренней логике коммутаторов свойственно высокое быстродействие, т. к. они должны обеспечивать возможность одновременной передачи данных с максимальной скоростью между каждой парой портов. Таким образом, использование коммутаторов позволяет существенно увеличить производительность сети.

Коммутация иллюстрирует то, что логическая топология определяется не только методом контроля доступа к среде передачи, но и множеством других аспектов схем электронных соединений (коммутатор является достаточно сложным и дорогим электронным устройством). Комбинируя новые технологии коммутации с существующими логическими схемами соединения, инженеры получают возможность создания новых логических топологий.

Несколько коммутаторов могут быть соединены между собой с использованием одной или нескольких физических топологий. Коммутаторы могут быть использованы не только для соединения индивидуальных станций, но и целых групп станций. Такие группы носят название "сегментов сети". Таким образом, по множеству причин коммутация может значительно повысить производительность Вашей сети.

Подключение к простейшей сети

Теперь, когда мы обсудили вопросы связанные с аппаратной реализацией различных компонентов сети и уяснили различия между логическими и физическими топологиями, рассмотрим способы подключения оборудования в простейшей сети. На рисунке показаны некоторые ранее рассмотренные сетевые устройства, подключенные к простейшей компьютерной сети.

Изображенная сеть состоит из следующих компонентов: три компьютера подключены к одному концентратору 10Base-T с использованием неэкранированной витой пары. На каждый компьютер установлены сетевые карты 10Base-T Ethernet. К одному из компьютеров также подключен лазерный принтер.

Компьютер в центральной нижней части рисунка является сервером и осуществляет контроль над всей сетью. Два оставшиеся компьютера – это рабочие станции. Рабочие станции используют сеть, контролируемую сервером. Одна рабочая станция – это персональный компьютер типа IBM PC, другая –компьютер Apple® Macintosh.

Концентратор 10Base-T обеспечивает физическое соединение всех трех компьютеров. Он также несет функции повторителя сигналов.

Линии между различными компонентами сети обозначают среду передачи: витую пару. Эта сеть использует топологию "физическая звезда", но базируется на логической топологии "логическая шина".

Принтер в этой сети подключен непосредственно к серверу с использованием параллельного порта этого компьютера. Такое подключение является стандартным для большинства принтеров. Сервер принимает задания на печать документов поступающих от каждой из рабочих станций. Поступившие задания на печать далее поступают к принтеру через параллельный порт сервера по соответствующему кабелю. Несмотря на то, что такой способ является наиболее простым для предоставления возможности нескольким станциям печатать документы на одном принтере, тем не менее существуют и другие способы подключения принтеров к сети. Вы можете, например, подключить принтер к специальному серверу печати или компьютеру со специальным программным обеспечением , предоставляющим возможность одновременно выполнять функции рабочей станции и сервера печати. Сейчас множество принтеров выпускается со встроенной в него сетевой картой, таким образом, принтер может подключаться непосредственно к среде передачи в любой точке сети.